JPL Blogs

JPL Blogs

Hear from scientists, engineers and other experts as they offer a fascinating look at JPL missions, science and history.


Optimal viewing in the night skies!

Are you eager to see the annual Perseids meteor shower tonight? You'll have to wait until near midnight to see it, so why not pass the time by viewing Venus, Saturn and Mars right from your doorstep? Step outside for the planetary warm-up act just as soon as the sun sets. (Viewing times will be best over the next week. By August 20, the planets set lower on the horizon and are harder to see.)

All you have to do is look towards the west for bright Venus to appear. Now hold your clenched fist up to the sky, covering Venus. To the right of Venus, about half of a clenched fist away, is a second planet: That's Saturn! And to the upper left of Venus is another planet: Mars!

That's not all you'll be able to see. Look below Venus for the slender crescent moon. If you don't see the moon, look again on the night of Friday, August 13 -- it will be a larger crescent to the left of Venus.

Though the three planets appear together in our line of sight, they are really far apart from each other. Mars is about 300 million kilometers (about 185 million miles) from Earth, while Venus is 112 million kilometers (about 70 million miles) away. Saturn? It's 1,535 million kilometers (about 954 million miles) from Earth. And finally, the moon is only 363 thousand kilometers (about 225 thousand miles) away. It's fun to compare the size of the moon and Mars, especially if you received that annual email incorrectly stating that Mars will be as big as the moon this month.

TAGS: UNIVERSE, SOLAR SYSTEM, METEORS, PERSIEDS

  • Jane Houston Jones
READ MORE

Comic-con Logo

I've been standing in line next to a green monster for more than an hour. This might sound like a bad situation, but the monster is actually a rather nice human in body paint and stunning, neon-green contact lenses. This is my fourth time at Comic-Con -- San Diego's annual gathering of all things geeky (some people call it "The Nerd Prom"). Lines to get into the various panels are a regular part of the program, especially now that attendance has swelled to well over 100,000. The lines here can actually be kind of fun -- people sit down on the carpeted floors, read comics, enjoy all the costumed creatures and superheroes, and chat with like-minded friends.

Standing in line to see one of Comic-Con's regular heroes -- Joss Whedon, the creator of "Buffy the Vampire Slayer" and director of the new "Avengers" movie -- I discover that a couple of my line companions and I are even more like-minded than I thought. They also work at JPL in Pasadena. One is an engineer working on the next Mars rover, Curiosity (although he didn't call the rover Curiosity -- like many engineers, he's accustomed to using its original acronym, MSL, which stands for Mars Science Laboratory). The JPL connection doesn't stop there. My new JPL friends just came from a panel that included Kevin Grazier, who works on NASA's Cassini mission to Saturn -- he's also science advisor for "Battlestar Galactica" and "Eureka."

It's no surprise that there's crossover between science and science-fiction geeks. Many of the astronomers I work with at JPL were inspired to go into astronomy by sci-fi shows like "Doctor Who" and "Star Trek." Science fiction and superhero stories take us to imagined worlds, while scientists and engineers take us to real worlds that can sometimes be even more surprising and exotic. At Comic-Con, the excitement about what we can do with our minds is more than a buzz, it's a roar.

Mingling with all of us humans (or people like me who still haven't figured out a good costume) are robots and creatures from many worlds. I spot bands of Cylons and stormtroopers, Bender the robot from "Futurama," Sookie Stackhouse from "True Blood," and many more. Superheroes stride proudly through the crowd, stopping about every two feet to pose for more pictures. There are numerous "Wonder Womans." I was particularly impressed by one, a gray-haired woman probably in her 60s, who looked fantastic in her star-spangled short shorts and red vinyl boots. And of course there are lots of zombies. (If there's one thing that became very clear to me this year, it's that vampires are on their way out and zombies are back in.)

I also chat with several artists and writers, and sit in on a few panels teasing us with upcoming storylines for TV shows. In the end, I am left with the impression that there are still so many stories to tell, so much left to explore. The Comic-Con experience inspires me in the same way that astronomy conferences do. We're all pushing into the unknown in unique ways. It would be cool, though, if astronomers also dressed up as what inspires them during their conferences. I'd love to come across a globular cluster of human stars parading across the exhibit-hall floor.

TAGS: ASTRONOMY, COMIC-CON, COMICS

  • Whitney Clavin
READ MORE

Titan's atmosphere makes Saturn's largest moon look like a fuzzy orange ball in this natural color view from the Cassini spacecraft.

On Sunday evening, my eyes were glued to eight windows on my computer screen, watching data pop up every few seconds. NASA's Cassini spacecraft was making its lowest swing through the atmosphere of Saturn's moon Titan and I was on the edge of my seat. Trina Ray, a Titan orbiter science team co-chair, was keeping me company. Five other members of my team were also at JPL. Between us, we were keeping an eye on about 2,000 data channels.

One of the 34-meter antennas at the Deep Space Network's Goldstone complex, DSS-24, was pointed at Saturn and listening for the signal that was expected to be here in just a few minutes. The data would be arriving at my computer as quickly as they could be sent back to Earth, though there was an agonizing hour-and-18-minute delay because of the distance the data had to travel. (We call this flyby T70, but it is actually Cassini's 71st flyby of Titan.)

It was a nervous time for me -- the previous night we had been at JPL to send some other real-time commands to the spacecraft when an alarm came in indicating that the magnetometer, the prime instrument taking data for the T70 flyby, needed a reset. Fortunately, the controller on duty immediately called the magnetometer instrument operations team lead in England. Within 90 minutes, the commands were on their way to do a computer reset and clear the alarm. At 2 a.m. Pacific time on Sunday, we got the email indicating all was well and the magnetometer was ready for the Titan closest approach.

So here we were, past one hurdle, hoping nothing else would come up. We had run hundreds of simulations over the past three-and-a-half years, so I knew we had done everything we could think to do. We did more training for this event than anything else we had done since we dropped off the Huygens probe in January 2005 for a descent through the moon's hazy atmosphere.

Right on time, at 7:26 p.m., the Deep Space Network locked on the spacecraft downlink, a good start. I was focused on the data for spacecraft pointing. As long as we stayed within an eighth of a degree of the expected pointing, everything would be fine. At 7:45 p.m., we got the data from closest approach, a mere 880 kilometers (547 miles) in altitude. Over the vocabox, a cross between a telephone and walkie-talkie, the attitude control team reported that the thrusters were firing about twice as much as we expected. The Titan atmosphere appeared to be a little thicker than we expected, even though we had fed about 40 previous low Titan flybys by Cassini and the descent data from Huygens into our modeling.

But spacecraft control was right on the money, keeping the pointing within our predicted limits. Even with the extra thrusting, we stayed well within our safety margin.

At 7:53 p.m., the spacecraft turned away to go to the next observation. I let out a sigh of relief, happy that everything during closest approach had gone just as we planned. Five attitude control guys crowded into my office with smiles on their faces. Trina and I were marveling at what a wonderful spacecraft we have to work with. Another first for the Cassini mission!

Now, as Trina says, we have to finish the job by returning all the great science data. We have data playbacks today at two different Deep Space Network stations to make sure we have - as we say here - both belts and suspenders. Engineers will also go back to analyze the data with the scientists to see just how dense the Titan atmosphere turned out to be at our flyby altitude.

But last night, at least, my team and I went home happy!

TAGS: SOLAR SYSTEM, SATURN, CASSINI, FLYBY, TITAN

  • Julie Webster
READ MORE

Artist's concept of Cassini's Titan flyby

This weekend, Cassini will embark on an exciting mission: trying to establish if Titan, Saturn's largest moon, possesses a magnetic field of its own. This is important for understanding the moon's interior and geochemical evolution.

For Titan scientists, this is one of the most anticipated flybys of the whole mission. We want to get as close to the surface with our magnetometer as possible for a one-of-a-kind scan of the moon. Magnetometer team scientists (including me) have a reputation for pushing the lower limits. In a world of infinite possibilities, we would have liked many flybys at 800 kilometers. But we went back and forth a lot with the engineers, who have to ensure the safety of the spacecraft and fuel reserves. We agreed on one flyby at 880 kilometers (547 miles) and both sides were happy.

Flying at this low altitude will mark the first time Cassini will be below the moon's ionosphere, a shell of electrons and other charged particles that make up the upper part of the atmosphere. As a result, the spacecraft will find itself in a region almost entirely shielded from Saturn's magnetic field and will be able to detect any magnetic signature originating from within Titan.

Titan orbits within the confines of the magnetic bubble around Saturn and is permanently exposed to the planet's magnetic disturbances. Previous measurements by NASA's Voyager spacecraft and Cassini at altitudes above 950 kilometers (590 miles) have shown that Titan does not possess an appreciable magnetic field capable of counterbalancing Saturn's. However, this does not imply that Titan's field is zero. We'd like to know what the internal field might be, no matter how small.

The internal structure of Titan can be probed remotely from its gravitational field or its magnetic properties. Planets with a magnetic field -- like Titan's parent Saturn or our Earth -- are believed to generate their global-scale magnetic fields from a mechanism called a dynamo. Dynamo magnetic fields are generated from currents in a molten core where charge-conducting materials such as metals are flowing around each other and also undergoing other stresses because of the planet's rotation.

We might not find a magnetic field at all. A positive detection of an internal magnetic field from Titan could imply one of the following:

a) Titan's interior still bears enough energy to sustain a dynamo.
b) Titan's interior is "cold" (and therefore has no dynamo), but its crust is magnetized in a similar way as Mars' crust. If this is the case, we should find out how this magnetization took place.
c) Something under the surface of Titan got charged temporarily by Saturn's magnetic field before this Cassini flyby. While I said earlier that the ionosphere shields the Titan atmosphere from Saturn's magnetic bubble, the ionosphere is only an active shield when the moon is exposed to sunlight. During part of its orbit around the planet, Titan is in the dark and magnetic field lines from Saturn can reach the Titan surface. A temporary magnetic field can be created if there is a conducting layer, like an ocean, on or below the moon's crust.

Once Cassini leaves Titan, the spacecraft will perform a series of rolls to fine-calibrate its magnetometer in order to assess T70 measurements with the highest precision. We're looking forward to poring through the data coming down, especially after all the negotiations we had to make for them!

TAGS: SOLAR SYSTEM, SATURN, CASSINI, FLYBY, TITAN

  • Cesar Bertucci
READ MORE

Rhea captured by Cassini

Helene captured by Cassini

Cassini's closest-ever flyby of Saturn's moon Rhea went quite smoothly and teams are busy checking out their data! These flybys never fail to amaze me. And the raw images -- which give us an unprocessed first look -- are really cool!

Raw image N00152150 gives us a view of part of the bright, fractured terrain we refer to as "wispy terrain" from about 14,000 kilometers (8,900 miles) away. We know that Rhea's albedo overall is quite high. (When I say "albedo," I basically mean "brightness" or "reflectivity." Studying the albedo can tell a lot about surface composition, geologic processes, and interactions with external environment.) But this image demonstrates how bright these cracks are since they are so shiny that the surrounding terrain looks quite dark. There are also some interesting apparent albedo variations seen in this image, which are really intriguing.

This raw image (N00152175) from Cassini's narrow-angle camera image was taken about 40 minutes after closest approach. The image shows a region adjacent to the wispy terrain --craters, craters everywhere! And wow, are those crater rims bright compared to the surrounding terrain.

Cassini captured a full portrait of the serene moon with its wide-angle camera (raw image W00063107) on the outbound leg of the flyby, about 1.25 hours after closest approach. Keep in mind that the phase angle is quite low here (only about 2.5 degrees), meaning that the sun is almost directly behind Cassini and Rhea is nearly fully illuminated -- so there are no shadows. Large-scale albedo variations are apparent across the surface.

The spacecraft also obtained a cool image of little Helene with raw image N00152211. We're basically looking at the night side of the body -- but it doesn't appear very dark, because it's illuminated by sunlight reflecting off Saturn. During the later image sequence of Helene, this small moon was transiting Saturn - so you can see Saturn in the background. Sometimes,pointing at these little guys can be very tricky, especially so close after a targeted flyby. It can be difficult (or impossible!) to get the positions of the spacecraft, the moon and the instruments all lined up -- but boy are these close-up Helene images incredible! The detail on the surface is tremendous, and should go a long way to informing geologists about surface properties and processes.

As the imaging team is taking a closer look at images such as these, other instrument teams -- including those for the radar instrument, composite infrared spectrometer, visual and infrared mapping spectrometer and the ultraviolet imaging spectrograph (the instrument I work on) -- are also busy processing their data. At a science meeting Friday, we talked about a few of the preliminary results. Some of the magnetospheric and plasma science instruments teams reported that they’re seeing some really interesting and surprising results! So stay tuned to hear more about those!

Of course, after one successful flyby, we get right to work on another. Coming up next: Dione on April 7!

TAGS: SOLAR SYSTEM, SATURN, CASSINI, FLYBY, RHEA

  • Amanda Hendrix
READ MORE

Bright, wispy markings stretch across a region of darker terrain on Saturn's moon Rhea.

On Tuesday, March 2, 2010, NASA's Cassini spacecraft will make its closest encounter yet with Saturn’s second largest moon.

Here in Cassini-land, we are really excited about Tuesday's Rhea flyby! This will be the mission's second targeted flyby of the moon in the mission, so it's sometimes referred to as R-2 or Rhea-2.

The spacecraft will fly by Rhea at an altitude of about 100 kilometers (60 miles), the closest encounter yet with Saturn's second largest moon. (Our first targeted flyby of Rhea in 2005 was at an altitude of 500 kilometers, or 300 miles, so this is way closer.)

We've been focusing a lot on the moon Enceladus because it is sort of the darling of the Saturn system -- but Rhea is a good example of why the other moons are interesting too. We know a decent amount about this moon, but we still have more questions, especially about the debris that could make up a ring around the moon and the composition of its surface.

The first targeted flyby in 2005 was focused on a radio science experiment doing gravity measurements to understand Rhea's interior structure. We also got some nice remote-sensing data from the cameras and spectrometers (see for example PIA07764) as well as radar measurements for surface and subsurface composition. We also did a much more distant flyby (5,000 kilometers or 3,000 miles) of Rhea in August 2007; that flyby was dedicated to remote sensing of the moon, including imaging (such as PIA08402). So we have a pretty good understanding of Rhea as being pretty heavily cratered with no super obvious signs of activity. It has this "wispy terrain" (see PIA08120), which is a lot like the type of feature seen on another Saturnian moon, Dione, and is basically a large series of fractures that are relatively bright compared to the surrounding regions.

One of the most interesting results to come out of the 2005 and 2007 flybys came from the fields and particles instruments: the mysterious signature of electron depletion around Rhea, suggestive of a debris ring. (Basically, solid material appears to be absorbing electrons in the vicinity of Rhea.) So Rhea could be a moon with its own ring! The ring has not been seen by any of the remote sensing instruments on Cassini, however. It can be difficult to get the viewing geometry just right in order to see this type of thing -- recall that the Cassini cameras didn't definitely see Enceladus' plume until after being in orbit for more than one year!

Tuesday's flyby should give us some clues about the suspected debris disk around the moon, but the slam-dunk experiment to "see" Rhea's debris disk is what we call a stellar occultation through the ring plane - looking to see if debris particles or clumps block out light from stars. Unfortunately we won't get to do such an occultation on this flyby. This is a tricky experiment to do because you have to get the timing and the geometry just right, but we're hoping to do it at some point later in the mission.

Anyway, on to Tuesday's flyby! To get a sense of what we're going to do, check out the movie made by Cassini navigator Brent Buffington that shows each of the activities performed during the flyby.

We will approach Rhea on the night side, so the moon will be dark. This is an especially good opportunity for the radar instrument to make measurements. (The cameras and imaging spectrometers typically prefer to observe the dayside, not the nightside.) Radar will do synthetic aperture radar imaging scans similar to those at Titan and will also do measurements to understand the surface composition. Previous measurements had suggested an asymmetry in brightness (which could be due to compositional differences) between the leading and trailing hemispheres of the moon, so this flyby will help with investigating that.

At closest approach, the fields and particles instruments will take data that will help us understand the environment of Rhea -- its interaction with Saturn's magnetosphere, its debris disk, and its ejecta cloud density. Ejecta clouds are dust or material that is being ejected or sputtered or otherwise lost from Rhea and its environment and contributing to populations of neutral particles and plasma in the Saturn system. This material may also be contaminating Saturn's rings.

Outbound, the remote sensing instruments will take over. They will make measurements -- in wavelengths as short as the ultraviolet all the way to the far infrared -- of Rhea's surface terrains and composition, as well as its surface temperature. The cameras have seen some "bluish spots" that could be related to the debris ring material - so those regions will be investigated more during this encounter, as will the fractured "wispy" terrain. The visual and infrared mapping spectrometer and the ultraviolet imaging spectrograph will do imaging spectroscopy to search for and map out water ice grain sizes, carbon dioxide, ammonia and fine-grained iron particles, among other materials. The composite infrared spectrometer will map temperatures across portions of Rhea's sunlit disk at high resolution. Ninety minutes after closest approach, Rhea will enter Saturn's shadow, giving the composite infrared mapping spectrometer a good opportunity to measure the cooling of the surface, which will provide information about the texture of the uppermost surface layers.

But wait - there's more! Not only do you get a Rhea flyby, but we're going to throw in a close approach to the small moon Helene! Helene is one of the "co-orbitals" of Dione. That means it orbits Saturn at the same radial distance as Dione, but it happens to be 60 degrees ahead of Dione. Helene is only about 30 or 35 km across (19 or 22 miles) and it's not spherical (see PIA10544). Cassini will approach Helene within about 1,825 kilometers (1,130 miles) -- by FAR the closest we've ever gotten to Helene -- allowing the cameras and imaging spectrometers to obtain information about individual regions across the surface.

So this promises to be an exciting period. Please stay tuned to see the great results!

TAGS: SOLAR SYSTEM, SATURN, CASSINI, FLYBY, RHEA

  • Amanda Hendrix
READ MORE

Skychart

Galileo's Letter to Prince of Venice

The end of 1609 and the first months of 1610 mark the beginning of modern astronomy. 400 years ago today, January 7th, Galileo Galilei looked up towards the constellation Orion. He aimed his telescope at an object brighter than any of the surrounding stars - the planet Jupiter.

The view through his telescope startled him. He did not see only one object, but rather, one large world, with four smaller objects nearby.

These four objects are the moons we now call Io, Europa, Ganymede and Callisto.

Galileo wrote in his book Sidereus Nuncius, which was published in 1610 the following words:

"I should disclose and publish to the world the occasion of discovering and observing four Planets, never seen from the beginning of the world up to our own times, their positions, and the observations made during the last two months about their movements and their changes of magnitude; and I summon all astronomers to apply themselves to examine and determine their periodic times, which it has not been permitted me to achieve up to this day . . . On the 7th day of January in the present year, 1610, in the first hour of the following night, when I was viewing the constellations of the heavons through a telescope, the planet Jupiter presented itself to my view, and as I had prepared for myself a very excellent instrument, I noticed a circumstance which I had never been able to notice before, namely that three little stars, small but very bright, were near the planet; and although I believed them to belong to a number of the fixed stars, yet they made me somewhat wonder, because they seemed to be arranged exactly in a straight line, parallel to the ecliptic, and to be brighter than the rest of the stars, equal to them in magnitude . . .When on January 8th, led by some fatality, I turned again to look at the same part of the heavens, I found a very different state of things, for there were three little stars all west of Jupiter, and nearer together than on the previous night."

"I therefore concluded, and decided unhesitatingly, that there are three stars in the heavens moving about Jupiter, as Venus and Mercury around the Sun; which was at length established as clear as daylight by numerous other subsequent observations. These observations also established that there are not only three, but four, erratic sidereal bodies performing their revolutions around Jupiter."

On the 400th anniversary of their first sighting, use a pair of binoculars to spot Galileo's four tiny moons directly next to the planet. On the evening of January 7 look to the southwest after sunset. Europa and Ganymede will appear to the upper left and Io and Callisto on the lower right of Jupiter.

Letters with translations http://www2.jpl.nasa.gov/galileo/ganymede/discovery.html

TAGS: UNIVERSE, SOLAR SYSTEM, JUPITER, GALILEO, TELESCOPE

  • Jane Houston Jones
READ MORE

Artist concept of Mars Opportunity Rover

I almost didn't get to drive the rovers.

As one of the five developers of the software used to build the command sequences and rehearse and visualize the rover activities, I really wanted to be one of the people using it in flight. Unfortunately, only three members of the team were selected to be Rover Planners (a job title we believe was chosen in place of Rover Drivers to make the job sound very boring and reduce competition for it). I was not one of them.

I was originally slated to be a downlink analyst looking at the telemetry from the rover to assess the driving and arm operations. This entailed months of training to learn how to run somebody else's software, a much more difficult task than using your own. Fortunately for me, and unfortunately for someone else, a position opened up on the Rover Planner team and I was transferred over. This entailed more months of training to learn the procedures, but the fuse was very short since Spirit was careening towards its landing. The fact that I knew the software tools already was the saving grace that allowed me to be ready to go on landing day.

Looking back on these six years, I'm tired, but amazed, when I think about how much we've accomplished and continue to accomplish. During the prime mission, I remember hearing Steve Squyres say how much we would like Spirit to go explore the hills in the distance but that we would never get there. Well, we have driven to the top of those hills and down the other side.

I remember when Opportunity drove into Purgatory and the Rover Planners immediately said that we needed to back out of the sand dune. After months of testbed activities and review, the decision was made to back out of the sand dune. I can remember looking over at Scott Maxwell, another Rover Planner, and saying to each other "This is so cool!!" (We still say that).

Some of my favorite memories are of giving talks to school kids about what I do, though one of my saddest was being asked by one of the kids, an honor student, if the moon landings were faked. I especially enjoyed calling up Car Talk and asking the guys how to keep our electric vehicle running through the winter on Mars. I laugh when I think about a recent talk I had with Scott when the right front wheel of Spirit seemed to work again after four years of being dragged around. Scott said he didn't know if we were driving with six wheels or only five. Immediately I jumped in, Dirty Harry-style, with, "I know what you're thinking punk. Are we driving with six wheels or only five? To tell the truth, I don't know myself. The question you have to ask yourself is, 'Do I feel lucky?' Well, do ya', punk?"

As we work on getting Spirit out of the current sand trap, I feel manic-depressive about our chances. One day I am sure we will have no problem but the next day I am equally convinced that all is lost. This is about the toughest situation we have ever had to get out of. When we are stuck, it seems as if we are always running out of daylight, which translates to power. It happened at Tyrone, it happened at Tartarus, and it has happened at Troy.

Hmmm, maybe we should stop giving names to locations that start with T.

TAGS: SOLAR SYSTEM, MARS, ROVER, OPPORTUNITY

READ MORE

On December 16, 1992, 8 days after its encounter with Earth, the Galileo spacecraft looked back from a distance of about 6.2 million kilometers (3.9 million miles) to capture this remarkable view of the Moon in orbit about Earth. Image credit: NASA/JPL

There apparently is a great deal of interest in celestial bodies, and their locations and trajectories at the end of the calendar year 2012. Now, I for one love a good book or movie as much as the next guy. But the stuff flying around through cyberspace, TV and the movies is not based on science. There is even a fake NASA news release out there… So here is the scientific reality on the celestial happenings in the year 2012.

Nibiru, a purported large object headed toward Earth, simply put - does not exist. There is no credible evidence - telescopic or otherwise - for this object's existence. There is also no evidence of any kind for its gravitational effects upon bodies in our solar system.

I do however like the name Nibiru. If I ever get a pet goldflish (and I just may do that sometime in early 2013), Nibiru will be at the top of my list.

The Mayan calendar does not end in December 2012. Just as the calendar you have on your kitchen wall does not cease to exist after December 31, the Mayan calendar does not cease to exist on December 21, 2012. This date is the end of the Mayan long-count period, but then – just as your calendar begins again on January 1 - another long-count period begins for the Mayan calendar.

There are no credible predictions for worrisome astronomical events in 2012. The activity of the sun is cyclical with a period of roughly 11 years and the time of the next solar maximum is predicted to occur about May 2013. However, the Earth routinely experiences these periods of increased solar activity – for eons - without worrisome effects. The Earth’s magnetic field, which deflects charged particles from the sun, does reverse polarity on time scales of about 400,000 years but there is no evidence that a reversal, which takes thousands of years to occur, will begin in 2012. Even if this several thousand year-long magnetic field reversal were to begin, that would not affect the Earth’s rotation nor would it affect the direction of the Earth’s rotation axis… only Superman can do that.

The only important gravitational tugs experienced by the Earth are due to the moon and sun. There are no planetary alignments in the next few decades, Earth will not cross the galactic plane in 2012, and even if these alignments were to occur, their effects on the Earth would be negligible. Each December the Earth and Sun align with the approximate center of the Milky Way Galaxy but that is an annual event of no consequence.

The predictions of doomsday or dramatic changes on December 21, 2012 are all false. Incorrect doomsday predictions have taken place several times in each of the past several centuries. Readers should bear in mind what Carl Sagan noted several years ago; "extraordinary claims require extraordinary evidence."

For any claims of disaster or dramatic changes in 2012, the burden of proof is on the people making these claims. Where is the science? Where is the evidence? There is none, and all the passionate, persistent and profitable assertions, whether they are made in books, movies, documentaries or over the Internet, cannot change that simple fact. There is no credible evidence for any of the assertions made in support of unusual events taking place in December 2012.

For more information on the silliness surrounding December 2012, see:

TAGS: SOLAR SYSTEM, COMETS, ASTEROIDS, STARDUST, NEAR-EARTH, NIBIRU

  • Don Yeomans
READ MORE

Cassini captured this raw image on its Nov. 02, 2009, flyby of Enceladus. The camera was pointing toward Enceladus from approximately 10,000 kilometers (6,000 miles) away. Image credit: NASA/JPL/Space Science Institute.

Phew! We made it through the deepest swoop yet down into the plume of Enceladus, the encounter we call "E7" because it's the seventh targeted flyby of Enceladus. But now we have our work cut out for the next few weeks as we pore over the data, painstakingly analyzing every signal to understand the composition of the plume and its structure.

So far, we know the Visual and Infrared Mapping Spectrometer (VIMS) was able to get images and data in a variety of wavelengths of light and saw that the plume extends out to at least 1,000 kilometers (600 miles).

We also have striking images of the moon crowned by its glorious plume, which Cassini captured right before its plunge. The images illustrate well that the spectacular plume spewing from the south polar region is composed of many much smaller jets.

The images and VIMS data both show that as the moon becomes less and less illuminated by the sun (similar to when our moon approaches the phase known as "new moon"), the plume gets much brighter. These data will be valuable for understanding the detailed structure of the plume and where it connects to the surface.

We have also learned that the density of the plume appears to be less than half of that predicted. Still, the heart of the plume measured on this flyby was about three times denser than the sparser parts of the plume we flew through previously.

There is more good news. We will be able to do the Enceladus flyby on April 28, 2010, on the spacecraft's reaction wheels. This means we will be able to perform the Radio Science Subsystem experiment with Cassini's main antenna to understand the interior of Enceladus under the hot south polar region.

During this experiment, antennas from the Deep Space Network (DSN) on Earth will be tracking the spacecraft to see how much Enceladus tugs on it. By measuring this tug, scientists will be able to answer such questions as: How much is the shape of the moon deformed by tidal forces from Saturn? Is there an unusually dense mass under the south pole? (The higher the mass, the larger the tug?)

We know that heating by tidal forces is what drives the plumes, but we're not sure exactly how. In addition to a possible liquid subsurface ocean, Enceladus may be harboring a dense mass underneath its surface that helped to start and maintain the moon's current activity.

Just wanted to share our excitement about the reams of data we're combing through. Now, back to work!

TAGS: SATURN, SOLAR SYSTEM, CASSINI, ENCELADUS, MOON

  • Bonnie J. Buratti
READ MORE