Tag Search - All Blogs

Tag Search - All Blogs


1954 Inspection Tour

In December 1954, only a few months after becoming the director of JPL, Dr. William Pickering (in the light-colored suit) hosted a visit by Frank H. Higgins, assistant secretary of the Army, and several members of his military entourage. At that time, JPL was under contract to Army Ordnance to develop guided missiles. In this photo, the group is gathered in the control room of the 20-inch wind tunnel. Frank Goddard (in the dark suit), chief of the Supersonic Aerodynamics Division, assisted with the tour and Bud Schurmeier, manager of the Wind Tunnel Section, observed from the back of the room while technicians conducted a demonstration.

This post was written for “Historical Photo of the Month,” a blog by Julie Cooper of JPL’s Library and Archives Group.

TAGS: TECHNOLOGY, HISTORY, DEEP SPACE NETWORK

  • Julie Cooper
READ MORE

Mechanical Coordinate Converter

In the early 1960s, a computer known as a coordinate converter was part of the instrumentation and equipment used to position the Deep Space Network, or DSN, antennas. This photograph from September 1960 shows a mechanical coordinate converter. The device converted azimuth-elevation position information to hour angle-declination and vice versa. It was able to coordinate two or more tracking antennas that used different coordinate systems for their pointing. It was likely used in early tracking studies of missiles and spacecraft, and as a visual backup for later antenna operations.

Patent US 3163935A lists JPL employee Richard M. Beckwith as the inventor of this instrument. In 1962, Beckwith was a designer with the Guidance and Control Design Group. The photo appears in the photo album for Communications Engineering and Operations, the JPL organization that managed the DSN antennas.

This post was written for “Historical Photo of the Month,” a blog by Julie Cooper of JPL’s Library and Archives Group.

TAGS: TECHNOLOGY, HISTORY, DEEP SPACE NETWORK

  • Julie Cooper
READ MORE

Goldstone Antenna Construction Model

In October 1963, the Advanced Antenna System, also known as the 210-foot (64-meter) Mars antenna, was under construction at the Goldstone Deep Space Instrumentation Facility. The site was being cleared and a foundation dug, an access road was nearing completion, and a reservoir was built to provide water during construction. Assembly of the antenna required a 200-ton guy derrick, used to lift large pieces into place. In preparation for this stage of construction, scale models of the antenna and the guy derrick were built, showing how the derrick would be anchored to the desert floor by long cables.

This post was written for “Historical Photo of the Month,” a blog by Julie Cooper of JPL’s Library and Archives Group.

TAGS: HISTORY, DSN, GOLDSTONE, ANTENNA

  • Julie Cooper
READ MORE

one-tenth scale Cassegrain antenna feed system

In the early 1960s, a new large-aperture, low-noise Advanced Antenna System was in its planning and early development stages for the Deep Space Instrumentation Facility (later known as the Deep Space Network). Compared with the 85-ft (26-meter) antennas then in use, the new antenna was to give a 10-decibel performance increase, with an order of magnitude increase in the data rate from future spacecraft. Feasibility studies and testing were conducted by NASA's Jet Propulsion Laboratory in Pasadena, California, and subcontractors for various technologies and antenna components.

This January 1962 photo shows a 960-mc one-tenth scale Cassegrain antenna feed system study for the Advanced Antenna System. The objective was to establish the electrical performance capabilities and operational feasibility of this type of feed system for large antennas. The mount of the test system was covered with epoxy fiberglass and polystyrene foam to limit reflection of energy during testing.

A 210-foot (64-meter) antenna, using the new technology and designs, was built at the Goldstone site in California and became operational in 1966. The antenna, DSS 14, became known as the Mars antenna when it was used to track the Mariner 4 spacecraft. It was later upgraded to 70 meters in order to track Voyager 2 as it reached Neptune.

This post was written for “Historical Photo of the Month,” a blog by Julie Cooper of JPL’s Library and Archives Group.

TAGS: HISTORY, DEEP SPACE NETWORK, VOYAGER, MARINER, MARS, NEPTUNE, TECHNOLOGY

  • Julie Cooper
READ MORE

JPL site in 1950

JPL has grown a great deal since this photo was taken in 1950. Just compare the photo to any current map web site or app, and notice the roads and buildings that have been moved, added to, or are no longer there. The JPL Archives collections of online maps, telephone books, and photo albums can help us explore JPL’s past – when there were wind tunnels on Lab, the JPL Store was a cafeteria, and near the parking structure site there was a water-filled towing channel.

With the help of the Huntington Library, we can go back even farther, to 1931. The Huntington Digital Library has a photo of the JPL site, taken from across the lake behind the Devil’s Gate Dam. Zoom in on the foothills on the right side of the photo to see the area that would become the Jet Propulsion Laboratory. Within five years, the lake was a dry river bed, the Arroyo Seco, and was chosen as the site of the famous rocket motor tests that led to the beginning of JPL. Four years after that, the first small wood frame buildings appeared along the edge of the arroyo.

This post was written for “Historical Photo of the Month,” a blog by Julie Cooper of JPL’s Library and Archives Group.

TAGS: HISTORY

  • Julie Cooper
READ MORE

Lunar Roving Vehicle Prototype

In 1964, at least two companies were working under contract to JPL on a Surveyor Lunar Roving Vehicle Study: Bendix Corporation Systems Division, and General Motors Corporation Defense Research Laboratories. This photo shows a prototype General Motors rover, one of several different approaches that were studied to determine their capabilities, limitations, and their impact on overall spacecraft design and performance. Twelve different spacecraft configurations were studied in detail, with variations in weight, power systems, communication method, and spaceframe size.

The final design of the Surveyor 1 through 7 lunar landers did not include a rover. NASA sponsored other lunar rover studies during the 1960s, with a variety of sizes and technical capabilities, and Apollo 15 astronauts became the first to drive a Lunar Roving Vehicle on the moon, during their 1971 mission. JPL continued to develop robotic spacecraft and rovers and, in 1997, landed Mars Pathfinder and its Sojourner rover on the red planet.

This post was written for “Historical Photo of the Month,” a blog by Julie Cooper of JPL’s Library and Archives Group.

TAGS: HISTORY, MOON, SPACECRAFT, TECHNOLOGY, ROVER

  • Julie Cooper
READ MORE

sphere drag experiment

In 1962, JPL conducted research in low-density gas dynamics, studying the drag on a sphere in a supersonic low-density flow environment, at various temperatures and speeds (Mach 1.8 to 4.4). Experiments were conducted in JPL’s Low Density Wind Tunnel. Nozzles were wrapped in a copper coil containing liquid nitrogen to cool the apparatus. A steel or bronze ball from 1/32 to 1/8 inch in size was suspended from fine tungsten wire in the jet. Two 8 mm movie projector lamps with built-in reflectors were placed at the edge of the jet and used to raise the sphere temperature to about 1,000 kelvins.

This post was written for “Historical Photo of the Month,” a blog by Julie Cooper of JPL’s Library and Archives Group.

TAGS: HISTORY, TECHNOLOGY

  • Julie Cooper
READ MORE

Mariner 3 Systems Test Configuration

Several spacecraft were built for the Mariner Mars 1964 mission. The ones that were actually launched were referred to as Mariner C-2 and Mariner C-3 until they were renamed Mariner 3 and Mariner 4, respectively. There was also a Proof Test Model (PTM, or Mariner C-1) and a Structural Test Model (STM). This photo shows Mariner C-2 configured for system tests in May 1964. It appears to be in the Spacecraft Assembly Facility, with the observation area at the top of the photo.

Mariner 3 was launched November 5, 1964, but the shroud did not fully eject from the spacecraft, the solar panels did not deploy, and the batteries ran out of power. The problem was fixed on Mariner 4, which began its successful journey to Mars on November 28, 1964.

Documentation found in the Archives does not identify the purpose of the sphere covering the magnetometer during this test.

This post was written for “Historical Photo of the Month,” a blog by Julie Cooper of JPL’s Library and Archives Group.

TAGS: HISTORY, MARINER, MARS, VENUS, SOLAR SYSTEM, MISSION, SPACECRAFT, TECHNOLOGY

  • Julie Cooper
READ MORE

Mariner Mars 1964 Solar Panel Test

“Most space projects live nine lives on the test bench before they are allowed one life in flight.”* The Mariner Mars mission was on a tight schedule in 1964, so testing was not quite as extensive as it was for other missions. A full-size temperature-control model and a proof-test model went through a series of environmental and vibration tests in the 25-foot space simulator at NASA’s Jet Propulsion Laboratory and other test facilities. This photo was taken in June 1964, outside of the Spacecraft Assembly Facility at JPL. In this unusual outdoor setting, the solar panel test took place in a large plastic tent.

After testing was completed, two spacecraft and a spare (the proof-test model) were partly disassembled, carefully packed and loaded on moving vans for a trip to the Air Force Eastern Test Range in Cape Kennedy, Florida. They were inspected, reassembled, and tested again before launch.

*To Mars: the Odyssey of Mariner IV, TM33-229, 1965.

This post was written for “Historical Photo of the Month,” a blog by Julie Cooper of JPL’s Library and Archives Group.

TAGS: HISTORY, MARS, MARINER, MISSION, SPACECRAFT, SOLAR SYSTEM,

  • Julie Cooper
READ MORE

Set of JPL Today With Al Hibbs

Before there was email, the JPL intranet, or streaming video to keep employees informed, Dr. Al Hibbs hosted a bi-weekly internal TV show to provide mission and technology updates, and discuss how current events affected JPL and NASA. It was shown on closed circuit televisions in the two cafeterias during breaks and lunch. At the time, the most common way of reaching all employees was to distribute hard copies of Universe, This Week, Director’s Letters, project status reports, and flyers.

Hibbs had worked at JPL since 1950 and was well known as the “Voice of JPL,” using his knowledge of engineering and science to explain complex concepts to the public during many of JPL’s planetary missions. In this 1980 photo, Hibbs (at left) talks to Rep. Don Fuqua of Florida, a member of the House of Representatives Science and Technology Committee.

This post was written for “Historical Photo of the Month,” a blog by Julie Cooper of JPL’s Library and Archives Group.

TAGS: HISTORY, TV, TECHNOLOGY, COMMUNICATIONS,

  • Julie Cooper
READ MORE