Artist concept of NASA's Juno spacecraft

In the News

NASA’s Juno mission, the first solar-powered mission to Jupiter, has become the farthest solar-powered spacecraft ever! Juno, and its eight science instruments designed to study the interior of Jupiter, has passed the mark previously held by the European Space Agency’s Rosetta mission and reached a distance of 5.3 astronomical units from the sun (an astronomical unit is equal to the average distance between Earth and the sun – about 149.6 million kilometers). Using only power from the sun, Juno will complete the five-year trip to Jupiter in July 2016 and begin studying the solar system’s most massive world in an attempt to better understand the origins of the planet, and in turn, our solar system.

What Made It Possible

Just as a bright source of light dims as you move away from it, sunlight becomes less intense the farther a spacecraft travels from the sun, limiting the amount of power that can be generated using solar cells. Previous missions that visited Jupiter, like Galileo, Voyager 1 and Voyager 2, couldn’t use solar power and instead used radioisotope thermoelectric generators (RTGs) to supply power.

Advances in solar panel efficiency along with improvements in the way spacecraft and their instruments use power have recently made solar power a viable option for spacecraft heading as far as Jupiter – though going beyond will require further technological advances.

Engineers designed Juno with three massive solar panels, each nearly 30 feet long. Combined, they provide Juno with 49.7 m2 of active solar cells. Once it reaches Jupiter, Juno will generate more than 400 watts of power, which may not sound like a lot, but it’s an impressive feat at so great a distance. For comparison, Juno’s solar panels can generate about 14 kilowatts near Earth.

NASA's Juno spacecraft being prepped for launch
Technicians stow for launch a solar array on NASA's Juno spacecraft. Each of Juno's three solar arrays is 9 feet (2.7 meters wide), by 29 feet (8.9 meters long). Image credit: NASA/JPL-Caltech/KSC

Teach It

Juno's record-setting achievement translates into a powerful lesson in exponents.

> Get the problem set!

Middle school students and other students working with exponents will find challenging, real-world applications related to the work being done here at NASA while addressing four Common Core Math standards:

  • Grade 6: Expressions and Equations A.1 - "Write and evaluate numerical expressions involving whole-number exponents."
  • Grade 6: Expressions and Equations A.2 - "Write, read, and evaluate expressions in which letters stand for numbers."
  • Grade 6: Expressions and Equations A.2.C - "Evaluate expressions at specific values of their variables. Include expressions that arise from formulas used in real-world problems. Perform arithmetic operations, including those involving whole-number exponents, in the conventional order when there are no parentheses to specify a particular order (Order of Operations)."
  • Grade 8: Expressions and Equations A.1 - "Know and apply the properties of integer exponents to generate equivalent numerical expressions. For example, 32 × 3-5 = 3-3 = 1/33 = 1/27."

Explore More!

TAGS: Juno, Jupiter, Exponents, Math, Lesson, Activity, Teachable Moment

  • Lyle Tavernier
READ MORE