Teachable Moments | January 12, 2018
Explorer 1 Anniversary Marks 60 Years of Science in Space
In the News
This month marks the 60th anniversary of the launch of America’s first satellite, Explorer 1. The small, pencil-shaped satellite did more than launch the U.S. into the Space Age. With its collection of instruments, or scientific tools, it turned space into not just a new frontier, but also a place of boundless scientific exploration that could eventually unveil secrets of new worlds – as well as the mysteries of our own planet.
How They Did It
At the height of competition for access to space, the U.S. and the Soviet Union were both building satellites that would ride atop rockets in a quest to orbit Earth. The Soviets launched Sputnik 1 on October 4, 1957. Shortly thereafter, on January 31, 1958, the U.S. launched Explorer 1, the satellite that would begin a new age of scientific space exploration.
Using rockets to do science from orbit was a brand-new option in the late 1950s. Before this time, rockets had only been used for military operations and atmospheric research. Still, rockets of that era weren’t very reliable and none had been powerful enough to place an object into Earth orbit.
Rocket Activities
Explore our collection of standards-aligned lessons for grades K-9.
In order to lift Explorer 1 to its destination in Earth orbit, an existing U.S. Army rocket, the Jupiter C, was fitted with a fourth stage, provided by the Jet Propulsion Laboratory in Pasadena, California. For this stage, a rocket motor was integrated into the satellite itself. The new, four-stage rocket was called “Juno 1.”
Prior to these first orbiting observatories, everything we knew about space and Earth came from Earth-based observation platforms – sensors and telescopes – and a few atmospheric sounding rockets. With the success of Explorer 1 and the subsequent development of more powerful rockets, we have been able to send satellites beyond Earth orbit to explore planets, moons, asteroids and even our Sun. With a space-based view of Earth, we are able to gain a global perspective and acquire a wide variety and amount of data at a rapid pace.
Why It’s Important
The primary science instrument on Explorer 1 was a cosmic ray detector designed to measure the radiation environment in Earth orbit – in part, to understand what hazards future spacecraft (or space-faring humans) might face. Once in space, this experiment, provided by James Van Allen of the University of Iowa, revealed a much lower cosmic ray count than expected. Van Allen theorized that the instrument might have been saturated by very strong radiation from a belt of charged particles trapped in space by Earth's magnetic field. The existence of the radiation belts was confirmed over the next few months by Explorer 3, Pioneer 3 and Explorer 4. The belts became known as the Van Allen radiation belts in honor of their discoverer.
Although we discovered and learned a bit about the Van Allen belts with the Explorer missions, they remain a source of scientific interest. The radiation belts are two (or more) donut-shaped regions encircling Earth, where high-energy particles, mostly electrons and ions, are trapped by Earth's magnetic field. The belts shrink and swell in size in response to incoming radiation from the Sun. They protect Earth from incoming high-energy particles, but this trapped radiation can affect the performance and reliability of our technologies, such as cellphone communication, and pose a threat to astronauts and spacecraft. It’s not safe to spend a lot of time inside the Van Allen radiation belts.
Most spacecraft are not designed to withstand high levels of particle radiation and wouldn’t last a day in the Van Allen belts. As a result, most spacecraft travel quickly through the belts toward their destinations, and non-essential instruments are turned off for protection during this brief time.
To conquer the challenge of extreme radiation in the belts while continuing the science begun by Explorer 1, NASA launched a pair of radiation-shielded satellites, the Van Allen Probes, in 2012. (The rocket that carried the Van Allen Probes into space was more than twice as tall as the rocket that carried Explorer 1 to orbit!)
The Van Allen Probes carry identical instruments and orbit Earth, following one another in highly elliptical, nearly identical orbits. These orbits bring the probes as close as about 300 miles (500 kilometers) above Earth’s surface, and take them as far out as about 19,420 miles (31,250 kilometers), traveling through diverse areas of the belts. By comparing observations from both spacecraft, scientists can distinguish between events that occur simultaneously throughout the belts, those that happen at only a single point in space, and those that move from one point to another over time.
The Van Allen Probes carry on the work begun by Explorer 1 and, like all successful space missions, are providing answers as well as provoking more questions. NASA continues to explore Earth and space using spacecraft launched aboard a variety of rockets designed to place these observatories in just the right spots to return data that will answer and inspire questions for years to come.
Teach It
- *NEW* Build a Satellite (Grades 5-8) – Students will use the engineering design process to design, build, test and improve a model satellite intended to investigate the surface of a planet.
- Rocket Lessons and Activities (Grades K-9) – Use these exciting lessons to help your students experience the thrill of building their own rockets using the engineering design process!
- Earth Science Lessons and Activities (Grades K-12) – Use these lessons to engage your students in studying Earth from space!
- Build Your Own Space Mission – Have younger students play this game to place instruments aboard a spacecraft and launch it into space!
- Download the GLOBE Observer app and have students be citizen scientists in support of NASA Earth science missions! Learn more about how to participate.
Explore More
TAGS: Explorer 1, STEM, NASA in the Classroom, Lessons, Activities, Teachable Moments, Earth Science, Earth, JPL History
Teachable Moments | October 31, 2016
When Computers Were Human
In The News
This week, we celebrate the 80th anniversary of the Jet Propulsion Laboratory. JPL was founded long before it became NASA’s premier center for robotic exploration of the solar system – and even before the agency existed. In fact, JPL started as the test-bed for some of the earliest rocketry experiments (thus the name “Jet Propulsion Laboratory”). There were a number of factors that conspired to change JPL’s focus from rocketry to space exploration. The Space Race and the resulting formation of NASA were two major factors. But also, with its growing expertise in launching rockets to new heights, JPL was anxious to take its experiments even farther. So in 1957, when the Soviet Union won the first leg of the Space Race by placing Sputnik, the first artificial satellite, into Earth orbit, JPL was called into action. A few months later, NASA launched the JPL-built Explorer 1, which became the first U.S. satellite.
Soon, the challenge was to land on the moon – and JPL was once again called to the task. Landing on another planetary body had never been accomplished so, understandably, it took a few tries to get things right. JPL’s first attempts at a moon landing with Rangers 1 through 6 all failed for various reasons. Some of the spacecraft flew very near the moon only to miss it by a few hundred kilometers; others met their mark only to have onboard cameras fail. Ranger 7 was the first mission to successfully land on the moon and transmit data, capturing images 1,000-times better than those obtained by ground-based telescopes. It wasn’t a particularly soft landing; rather it was a purposeful crash landing, capturing images along the way. But everyone at JPL was thrilled to have hit their target and returned usable data. These data, and those collected by subsequent missions, made possible NASA’s later human missions to the moon.
At the same time it was launching the Ranger lunar missions, JPL had also set its sights on venturing even farther into space and began launching a series of missions called Mariner to Venus, Mercury and Mars. It wasn’t long before JPL’s specialty became creating robotic spacecraft to go not just to the moon, but also where no one had gone before.
Learn more about the history of JPL and the U.S. space program in the video series below. And explore the interactive timeline.
How They Did It
What’s often not known is that all the early rocket experiments and later missions to the moon and beyond wouldn’t have been possible without a team at JPL known as the human “computers.” Most of these human computers were women who either had degrees in mathematics or were simply very good at mathematics. Over the course of time, these women not only performed hundreds of thousands of mathematical calculations crucial to the U.S. space program, but also eventually became some of the first computer programmers at NASA.
In the early days of space exploration, the best mechanical computers were large (the size of a room) and not particularly powerful. Human capabilities were much more powerful for many tasks, including the rapid calculations needed for trajectory analysis and verification, as well as the graphing of data points on trajectories, which made a spacecraft’s path easy to see.
One of the human computers’ main tasks was computing the planned trajectories, or paths, for a spacecraft based on the vehicle weight, lift capacity of the rocket, and the orbital dynamics of the planets.
When a spacecraft is launched, it begins sending telemetry signals back to Earth. These signals tell engineers information about the spacecraft’s location and health. But this information isn’t perfectly straightforward. It arrives as a bunch of numbers that need to be combined in formulas along with other constantly changing parameters (such as velocity, vehicle mass and the effect of gravity from nearby bodies) in order to reveal the spacecraft’s actual location. Before there were computers (as we know them today) to do these calculations, human computers would feverishly calculate the exact location of the spacecraft as the telemetry came in and compare that to the planned trajectories. Their calculations would reveal whether the spacecraft was on target.
Doing the calculations required to get Explorer 1 into orbit was no small task. Calculating the trajectory for a Ranger crash landing or a Surveyor soft landing on the moon was even more challenging. Once humans were destined to be on board for the Apollo missions, the stakes were even higher. Fortunately, JPL had set the stage developing the techniques – and calculations – necessary to land a robotic spacecraft safely on the moon.
Why It’s Important
Today, JPL continues setting the pace for exploration of the solar system using robots to go where humans hope to venture one day, such as Mars. Though trajectory computations are now done using modern day computers, humans are still required to do trajectory analysis and mission planning. Every mission is different, and with new techniques comes new simulation equations that must be developed and computations that must be performed during actual mission events to ensure success. But even now, nothing is fail-proof. Lots of variables can and do influence spaceflight. Arriving safely on another planet millions of miles away isn’t easy or taken for granted, but when things go right and we achieve a safe landing, it is definitely cause for celebration.
Teach It
When launching to another planet, we want to take the most efficient route, using the least amount of rocket fuel possible. The early human computers quickly discovered that launching when two planets are closest and using a lot of rocket fuel for the job isn’t the best plan.
Use this fascinating bit of history as a real world, advanced algebra and physics lesson with students in this standards-aligned activity that has grades 9-12 calculate the next launch window to Mars!
Explore More
- Meet JPL engineer Sue Finley – Finley started at JPL in 1958 as a human computer and still works at the laboratory.
- Women at JPL website
- JPL History
- JPL 80th Anniversary Article
- JPL Timeline
- JPL 80th Anniversary Video Playlist
- JPL 80th Anniversary Printable Calendar
- Mars in a Minute Video Series
- Stomp Rockets Activity
- Basics of Space Flight Tutorial
TAGS: Women in STEM, JPL Anniversary, History, Human Computers, Launch Windows, Algebra, High School, Women at NASA, JPL History