II IN THE SKY7
 Answer Key

Cold Case

Learn a bit more about Arrokoth by calculating how long it takes the object to make one trip around the Sun.

1. Using the formula for circumference, compute distance traveled by Arrokoth in one orbit.

$$
\begin{aligned}
& C=2 \pi r \\
& C=2 \pi(6,600,000,000 \mathrm{~km}+150,000,000 \mathrm{~km}) \\
& C=2 \pi(6,750,000,000 \mathrm{~km}) \approx 42,411,500,823 \mathrm{~km}
\end{aligned}
$$

2. Convert radius kilometers to meters, then compute Arrokoth's orbital velocity.

$$
\begin{aligned}
& V=\sqrt{\frac{G M_{\text {sun }}}{r}} \\
& V=\sqrt{\frac{\left(6.67 \times 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}\right) \cdot\left(2 \times 10^{30} \mathrm{~kg}\right)}{6.75 \times 10^{12} \mathrm{~m}}} \\
& V \approx 4.446 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

3. Convert circumference kilometers to meters, then use d=rt compute the time it takes Arrokoth to complete one orbit.
$t \approx(42,411,500,823,000 \mathrm{~m}) /(4,446 \mathrm{~m} / \mathrm{s}) \approx 9,539,248,948 \mathrm{~s}$
4. Convert seconds to years.
$(9,539,248,948 \mathrm{~s}) \cdot(1 \mathrm{~min} / 60 \mathrm{~s}) \cdot(1$ hour $/ 60 \mathrm{~min}) \cdot$
(1 day / 24 hours) • (1 year / 365 days) ≈ 300 years
