Home  >  References

References


Radiation Environments:

Orbit Verification Program

  • Andersen, A.J., “Transformation from Jupiter System III Coordinates to a De-Spun Jovicentric Frame, IOM 5132-19-003, (internal document), Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 2019
Go to Orbit Verification

Bfield

  • Bagenal, F., “Giant Planet Magnetospheres,”Ann. Rev. Earth Planet. Sci.,vol. 20, pp. 289–328, 1992.
  • Connerney, J. E. P., “Magnetic Fields of the Outer Planets,” J. Geophys. Res., vol. 98, no. E10,pp. 18,659-18,679, 1993.
  • Connerney, J.E., Acuna M.H., Ness N.F., and Satoh T.,, “New models of Jupiter's magnetic field constrained by the Io flux tube footprint,” J. Geophys. Res., 103 (A6), 11929–11940, 1998.
  • Divine, N., and Garrett, H. B., "Charged Particle Distributions in Jupiter's Magnetosphere", J.GEOPHYS. RES., 88, A9, pp. 6889-6903, Sept. 1, 1983
  • Divine, N., “Numerical Model for Distributions of Energetic Electrons and Protons in Jupiter’s Radiation Belts”, IOM-3574-78-171, to J.C. Beckman, July 18, 1978.
  • Evans, R. W., “Planetary Magnetic Field Models for Jupiter, Saturn, Uranus, and Neptune; with Field Line Tracing Algorithms (Computer Codes)”, IOM 5132-04-006 , (internal document), Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 2004
  • Garrett, H. B., and Evans, R. W., “Computations of the B(critical) value for various jovian magnetic field models”, IOM-5130-06-010, (internal document), Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 2006.
  • Khurana, K. K., and Schwarzl, H. K., (2005), Global structure of Jupiter’s magnetospheric current sheet, J. Geophys. Res., 110(A07227), doi:10.1029/2004JA010757.
  • Kim, W., “Corrections of published and coded versions of Connerney's Jupiter current sheet magnetic field model”, IOM 5132-08-016, (internal document), Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 2008
  • Roederer, J.G., "Dynamics of Geomagnetically Trapped Radiation", Springer, Verlag, 1970
Go to Bfield

GIRE3

  • de Soria-Santacruz Pich M., et al., “An empirical model of the high-energy electron environment at Jupiter”, Journal of Geophysical Research – Space Physics, (2016).
  • Garrett, H.B., “Updating the Jovian Radiation Environment Software Tool (GIRE3), JPL IOM 5130-16-005, (2016)
  • Garrett, H.B., Jun, I., Evans, R. W., Kim, W., and Brinza, D., “The Latest Jovian Trapped Proton and Heavy Ion Models”, IEEE Transactions on Nuclear Science, (2017).
Go to GIRE3

GRID3

  • Evans,R., “A new grid program, Grid2, has been produced to estimate Jupiter trapped particle fluences quickly for project support”, IOM, 5132-13-070, (internal document), Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 2013
  • Evans,R., “A new GRID program, GRID2p, for quick estimates of Jupiter trapped particle fluences”, IOM 5132-15-032, (internal document), Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 2015
  • Martinez-Sierra, L.M., “A new GRID program, GRID3, for quick estimates of Jupiter trapped particle fluences”, IOM 5132-17-009, (internal document), Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 2017
Go to GRID3

SATRAD

  • Divine, N., “Numerical Models for Electron and Proton Distributions in Saturn's Radiation Belts”, IOM-5217-90-029, (internal document), Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 1990.
  • Evans, R.W., “Planetary MagneticField Models for Jupiter, Saturn, Uranus, and Neptune; with Field LineTracing Algorithms (Computer Codes)”, IOM-5132-04-006, (internal document), Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 2004
  • Garrett, H.B., J.M. Ratliff, and R.W. Evans, "Saturn Radiation (SATRAD) Model", JPL Publication 05-9, pp. 103, October, 2005. https://trs.jpl.nasa.gov/handle/2014/38302
Go to SATRAD

UMOD

  • Connerney, J. E. P., Acuna, M. H., and Ness, N. F., “The Magnetic Field Of Uranus”, J. Geophys. Res., vol. 92, no. A13, pp. 15,329–15,336, December 30, 1987.
  • Evans,R., “PDS and Modern Uranus Co-ordinates”, IOM 5132-13-007(also D-95199) (internal document), Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, Jan. 21, 2013.
  • Garrett, H, B., ”Uranus Radiation Modeling”, IOM 5130-12-036, (internal document), Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 2012
  • Garrett, H.B., Evans, R. W., and Martinez-Sierra, L.M., “UMOD Radiation Model Description and FORTRAN Code”, IOM 5130-15-002, (internal document), Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 2015
  • Garrett, H.B., Martinez-Sierra, Luz Maria, and Evans, R. W., "The JPL Uranian Radiation Model (UMOD)", JPL Publication 15-7, pp. 55, September 2015.
Go to UMOD

NMOD

  • Evans, R. W., PDS and Modern Neptune Co-ordinates, IOM 5132-13-007 (also D-95199) (internal document), Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 2013
  • Evans, R. W., DPS and Modern Neptune Coordinates and Neptune Magnetic Field models, IOM5132-2017-015 (internal document), Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, June 14, 2017a.
  • Evans, R. W., DPS and Published Neptune Data for Energetic Particles, IOM 5132-2017-016 (internal document), Jet Propulsion Laboratory, California Institute of Technology, Pasadena,CA, June 14, 2017b.
  • Garrett, H.B., and Evans, R. W., “NMOD Radiation Model Description and FORTRAN Code”, IOM 5130-17-007, (internal document), Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 2017
  • Garrett, H. B., and Evans, R. W., “The JPL Neptune Radiation Model (NMOD)”, JPL Pub 17-2, Pasadena, California, July 1, 2017.
Go to NMOD

Solar Protons

  • Feynman, J., Spitale, G., Wang, J., and Gabriel, S., "Interplanetary Proton Fluence Model: JPL 1991", J. Geo. Res. 98 (A8), 13281, August 1, 1993.
Go to Solar Proton




Planetary Atmospheres:

Venus

  • Cravens, T.E., “Ionosphere”, in Encyclopedia of Planetary Sciences, J. H. Shirley and R. W. Fairbridge, editors, Chapman and Hall, 115 Fifth Avenue, New York, NY 10003, USA, ISBN 0-412-06951-2, 1997. Fig. I29, Page 358. Copyright 1997 Springer New York LLC. With permission of the publisher
  • Craven, T. E., T.I. Gombosi, J. Kozyra, A.F. Nagy, L.H. Brace, and W.C. Knudsen, “Model calculations of the dayside ionosphere of Venus: Energetics”, J. Geophys. Res., 85, A13, 7778-7786, 1980. Fig. 9, Page 7783. Copyright 1980 American Geophysical Union. Reproduced/modified by permission of American Geophysical Union
  • Fig. 4.1, page 98, from S.J. Bauer and H. Lammer, “Planetary Aeronomy, Atmosphere Environments in Planetary Systems”, Springer New York LLC, New York, NY, 2004. Copyright 2004 Springer New York LLC. With permission of the publisher.”
Go to Venus

Earth

  • (Carrigan and Skrivanek, 1974) and based on CIRA 1972. [U.S. Government.]
  • (Carrigan and Skrivanek, 1974) and based on models of Hoffman et al. (1972). [U.S. Government.]
  • (Carrigan and Skrivanek, 1974)—Tn adapted from CIRA 1972. Ti and Te from Millstone Hill Observatory, Westford, MA. [U.S. Government.]
Go to Earth

Mars

  • Fig. 4.2, page 98, from S.J. Bauer and H. Lammer, “Planetary Aeronomy, Atmosphere Environments in Planetary Systems”, Springer New York LLC, New York, NY, 2004. Copyright 2004 Springer New York LLC. With permission of the publisher.
  • Chen, R.H., T.E. Cravens, and A.F. Nagy, “The Martian ionosphere in light of the Viking observations”, J. Geophys. Res., 83, 3871, 1978. Fig. 6, Page 3875. Copyright 1978 American Geophysical Union. Reproduced/modified by permission of American Geophysical Union.
  • Rohrbaugh, R.P., Nisbet, J.S., Bleuler, E., and Herman, J.R., ”The effect of energetically produced O2+ on the ion temperatures of the Martian thermosphere”, J. Geophys. Res., 84, A7, pp. 3327-3338, July 1, 1979. Fig. 8, Page 3335. Copyright 1980 American Geophysical Union. Reproduced/modified by permission of American Geophysical Union.
Go to Mars

Jupiter

  • Jupiter data courtesy J. Justus and H.L. Justh, NASA Marshall Space Flight Center, Huntsville, AL. Model values were derived from Yelle et al. (2001).
  • Aretya, S.K., and T.M. Donahue, “Model Ionospheres of Jupiter”, in Jupiter, Studies of the interior, atmosphere, magnetosphere, and satellites, T. Gehrels, editor, The University of Arizona Press, Tucson, AZ, pp. 304-318, 1976. Fig. 3, Page 311. Copyright 1976, The University of Arizona Press. By permission of the publisher.
  • Jupiter data courtesy J. Justus and H.L. Justh, NASA Marshall Space Flight Center, Huntsville, AL. Model values derived from: Yelle et al. (2001).
Go to Jupiter

Saturn

  • Saturn data courtesy J. Justus and H.L. Justh, NASA Marshall Space Flight Center, Huntsville, AL. Values derived from Lindal et al. (1985)
  • Reprinted from Waite, J.H., and T.E. Cravens, "Current review of the Jupiter, Saturn, and Uranus ionospheres", Adv. Space Res., 7, pp. 12,119-12,134, 1987. Fig. 16, p. 12,131. Copyright 1987, with permission from Elsevier.
  • Saturn data courtesy J. Justus and H.L. Justh, NASA Marshall Space Flight Center, Hunts- ville, AL. Values derived from Lindal et al. (1985).
Go to Saturn

Titan


Uranus

  • Herbert. F., B.R. Sandel, R.B. Yelle, J.B. Holberg, A.L. Broadfoot, D.E. Shemansky, S.K. Atreya, and P.N. Romani, “The upper atmosphere of Uranus: EUV occultations observed by Voyager 2”, J. Geophys. Res., 92, A13, pp. 15,093-15,109, 1987. Fig. 16, Page 15,107. Copyright 1980 American Geophysical Union. Reproduced/modified by permission of American Geophysical Union.
  • Herbert. F., B.R. Sandel, R.B. Yelle, J.B. Holberg, A.L. Broadfoot, D.E. Shemansky, S.K. Atreya, and P.N. Romani, “The upper atmosphere of Uranus: EUV occultations observed by Voyager 2”, J. Geophys. Res., 92, A13, pp. 15,093-15,109, 1987. Fig. 16, Page 15,107. Copyright 1980 American Geophysical Union. Reproduced/modified by permission of American Geophysical Union.
  • Herbert. F., B.R. Sandel, R.B. Yelle, J.B. Holberg, A.L. Broadfoot, D.E. Shemansky, S.K. Atreya, and P.N. Romani, “The upper atmosphere of Uranus: EUV occultations observed by Voyager 2”, J. Geophys. Res., 92, A13, pp. 15,093-15,109, 1987. Fig. 16, Page 15,107. Copyright 1980 American Geophysical Union. Reproduced/modified by permission of American Geophysical Union.
Go to Uranus

Neptune

  • Herbert. F., B.R. Sandel, R.B. Yelle, J.B. Holberg, A.L. Broadfoot, D.E. Shemansky, S.K. Atreya, and P.N. Romani, “The upper atmosphere of Uranus: EUV occultations observed by Voyager 2”, J. Geophys. Res., 92, A13, pp. 15,093-15,109, 1987. Fig. 16, Page 15,107. Copyright 1980 American Geophysical Union. Reproduced/modified by permission of American Geophysical Union.
  • Capone, L.A., Whitten, R.C., Prasad, S.S., and Dubach, J., “The Ionospheres of Saturn Uranus, and Neptune”, Astrophys. J., Vol. 215, pp. 977- 983, 1977. Fig. 3, Page 981. Reproduced by permission of the AAS.
  • Neptune data based on Neptune-GRAM, courtesy J. Justus and H.L. Justh, NASA Marshall Space Flight Center, Huntsville, AL. Atmospheric data files for Neptune-GRAM from Fig. 1, page 431 of Bishop et al. (1995); Fig. 3, page 555 of Gautier et al. (1995); and Fig. 23, page 655 of Ingersoll et al. (1995).
Go to Neptune

Pluto

  • Summers, M., D.F. Strobel, and G.R. Gladstone, “Chemical models of Pluto’s atmosphere”, In Pluto and Charon, eds. S.A. Stern and D.J. Tholen. U. Ariz. Press. Tucson, AZ, 1997. Fig. 11a, p 416. Copyright 1997, The University of Arizona Press. By permission of the publisher.
  • Summers, M., D.F. Strobel, and G.R. Gladstone, “Chemical models of Pluto’s atmosphere”, In Pluto and Charon, eds. S.A. Stern and D.J. Tholen. U. Ariz. Press. Tucson, AZ, 1997. Fig. 11b, p 416. Copyright 1997, The University of Arizona Press. By permission of the publisher.
  • Summers, M., D.F. Strobel, and G.R. Gladstone, “Chemical models of Pluto’s atmosphere”, In Pluto and Charon, eds. S.A. Stern and D.J. Tholen. U. Ariz. Press. Tucson, AZ, 1997. Fig. 2, P. 397 416. Copyright 1997, The University of Arizona Press. By permission of the publisher.
Go to Pluto




Effects:

NIEL

  • Jun, I., et al. "Proton nonionizing energy loss (NIEL) for device applications." IEEE Transactions on Nuclear Science 50.6 (2003): 1924-1928.
  • Jun, I., and McAlpine, W., "Displacement damage in silicon due to secondary neutrons, pions, deuterons, and alphas from proton interactions with materials." IEEE Transactions on Nuclear Science 48.6 (2001).
  • Jun, I., Kim, W., and Evans, R. W., "Electron nonionizing energy loss for device applications." IEEE Transactions on nuclear science 56.6 (2009).
Go to Electron NIEL

Dose Depth Curves

  • Jordan, T., NOVICE, A Radiation Transport Shielding Code, Experimental and Mathematical Physics Consultants, 1993 Using NOVICE 2006 version.
Go to Dose Depth Curves

NUMIT

  • Kim, W., "NUMIT 2.0: The official release of the JPL's internal charging code." Proceedings of the 12th Spacecraft Charging Technology Conference,(Kitakyushu, Japan). 2012.
  • Jun, I., et al. "Review of an internal charging code, NUMIT." IEEE Transactions on Plasma Science 36.5 (2008).
Go to NUMIT