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Project Objectives: FY19 Results:

Successful thesis defense by John Naviaux on "Chemical and Physical Mechanisms of Calcite Dissolution in
Seawater” (see references 1-6 below). Submission of second ECCO-Darwin paper (see reference 7 as well as the
description of the ECCO-Darwin global-ocean biogeochemistry model in this poster.

Combine JPL/Caltech in-situ and remotely-sensed observations with ECCO-Darwin ocean
biogeochemistry model in order to improve understanding of ocean acidification and carbon cycle.
Develop tools needed to reduce uncertainties regarding future projections of these processes.Specific
objectives are to improve representation of key ocean acidification processes in ECCO-Darwin, - s .
including (1) sources of chemicals due to river runoff and other coastal processes, (2) representation of Slgnlflcance Of results:
carbonate dissolution rates, and (3) sources and sinks of chemicals in ocean sediments; and use this
updated ocean biogeochemistry model to study hypothetical responses of ocean biogeochemistry to (4)
atmospheric carbon perturbations and (5) artificial carbon sequestration scenarios.

Development of unique, world-leading research capabilities, which are positioning JPL/Caltech at forefront of ocean
acidification and carbon dioxide removal studies and open avenues of future funding as part of NSF’s Ocean
Acidification Program, NASA's Ocean Biology & Biogeochemistry Program, OCO-2 and PACE science teams, EV
Suborbital and other field campaign opportunities, and private foundations.

1. What is ECCO-Darwin? 3. Climatolgical Results (1995-2017)

ECCO-Darwin is a new data-assimilative global ocean biogeochemistry model. e — > @
Here we leverage results from two well-established projects’2: - i~ P ¥ o
Model Physics:
Estimating the Climate and Model Ecosystem and Chemistry:
Circulation of the Ocean (ECCO) MIT Darwin Project
Consortium
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[LEFT] Climatological surface ocean pCO, for (a) ECCO-Darwin and (b) Takahashi, (c) Rodenbeck, and (d) Landschltzer

[LEFT] Snapshot of sea-surface temperature from the ECCO ocean state estimate. [RIGHT] The Darwin Project ecosystem interpolation-based products. [RIGHT] Associated air-sea CO, fluxes.

model (35 phytoplankton species) driven by ECCO ocean circulation fields. This realistic, “survival of the fittest” ocean ecology
is the basis of ECCO-Darwin, which uses a simplified ecosystem based on the most successful species in the above simulation.

This model represents a major step forward as it:

4. Seasonal to Multi-Decadal Results
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1) Assimilates global physical and biogeochemical observations in a
property-conserving manner (i.e., without nudging or spurious sources/sinks).
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2) Considers the time-varying nature of the ocean carbon sink
over multi-decadal timescales.
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2. ECCO-Darwin Model Setup

Model: |
MITgcm w/ “Lon-Lat-Cap” (LLC) grid y.-e
(1/3° at Equator, ~18 km at high-latitudes) , oy
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[ABOVE] Time series of globally-integrated air-sea CO,
flux for the GCP ocean sink (black line), ECCO-Darwin
(blue), Rbdenbeck (red), and Landschutzer (green). Thin
grey lines show the individual OBMs used to compute the
GCP ocean sink; gray shading shows the GCP
uncertainty band.

Ocean Physics: | .
ECCO LLC270 (1992—2018) :
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Ecosystem:
5 phytoplankton and 2 zooplankton types
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[Above] Example of the novel “Lon-Lat-Cap’

Observational Constraints (n — 4038777): horizontal grid used by ECCO-Darwin, which
allows for an improved representation of the [ABOVE] Time series of biome-scale surface ocean pCO, for ECCO-Darwin (blue),
SOCATVS surface ocean fCO2 Arctic Ocean. Rodenbeck (red), and Landschutzer (green). Thin lines sﬁow monthly values

GLODAPv2 profiles, BGC-Argo profiles

and thick lines show interannual variability (12-month forward running mean).

Biogeochemical Optimization:
12 Greens Functions (6 model parameters and inital conditions)
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5. Ongoing ECCO-Darwin Development
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Non-linear dissolution rate laws
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Coastal blue carbon fluxes

Global uncertainty anaIySiS [ABOVE] We are actively working to improving ECCO-Darwin’s representation
of land-to-ocean carbon fluxes and the carbon cycle in coastal ecosystems.
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[ABOVE] Comparison of biogeochemical observations and ECCO-Darwin. X-axis shows observations and y-axis
shows ECCO-Darwin at the same space-time location. Colors represent the normalized density of observation-model
pairs (log scale).
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