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Streamflow Uncertainty Propagation

Objective: Propagate uncertainty from runoff to surface flows.
Check agreement of model + uncertainty with 
the 1562 USGS gauges in the Western U.S. 
(domain, at right; hydrograph, panel (a)).

Runs cover years-to-decades over ~106 river reaches.  
Problem scale (panel (b)) means no full covariances.  

Errors from a monthly block length can be extrapolated to daily (panel (c)).

A local/regional spatial error decomposition allows error propagation in time similar to 
the flow computation itself.  Capturing spatial co-variation is critical.

Propagated errors (panel (d)) show order-of-magnitude agreement, but also indicate 
significant unquantified error in runoff.  More: David et al., GRL, 2019.
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Project Objective

We focus on Uncertainty Quantification (UQ) for 
error assessment for Earth science retrievals.  
Ultimate goal is to improve science outcomes & 
enable decision support.  

We do not target data assimilation, OSSEs, or 
formulation.

Technical focus areas:
Groundwater UQ (below right)
Surface water UQ (below)
Relevant to GRACE and SWOT
Atmospheric retrievals like AirMSPI/MAIA (right)

UQ for Atmospheric Retrievals

Many Earth Science retrievals (MLS, AIRS, EcoStress, 
OCO-2) follow the same framework (right).

Retrieval finds a state estimate from radiances arising from 
a true state-of-nature, like CO2 abundance.  
One core UQ problem here is quantifying the uncertainty 
injected when the forward model is not exactly known.  

A Monte Carlo framework (Observing System Uncertainty 
Experiment, or OSUE) can estimate actual uncertainty for 
such complex forward models.
A multi-angle retrieval related to the MAIA AOD retrieval is
plotted.  The actual errors for the particle size distribution 
are much larger than those predicted by linear analysis.

Significance of Results

Conventional uncertainty propagation is insufficient to correctly assess errors of JPL 
data products.  FY17 workshop identified these UQ needs: a written UQ best-practice 
methodology (addressed partly by OSUE methodology); derivation of spatial 
covariances as well as point-by-point standard errors; methods to verify retrieval 
standard errors.  Results in streamflow uncertainty underline the importance of 
quantifying spatial covariances.

Streamflow uncertainties are crucial for assimilation of coming SWOT surface water 
measurements, and three publications from this work have addressed this problem.  
Similarly, uncertainties for high-resolution groundwater are important for water 
management applications to realize the potential of GRACE measurements.
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Available Data Estimate Uncertainty
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Groundwater UQ

Objective: Develop methodology for high-resolution estimates, with uncertainty, for 
groundwater and total water storage for the Western U.S.

Method combines virtues of remote sensing data and process models.
• GRACE: spatially-coarse but unbiased observation of water storage anomalies.
• Land surface model (VIC, with deep groundwater layer) provides realistic fine-

spatial-resolution simulation but is subject to model bias.
• Infer high-resolution total water storage (TWS) through Bayesian statistical model 

that combines the two data sources.
• Uncertainty estimate is a key benefit of the Bayesian approach.

Statistical Model is overlaid upon:
• GRACE = True low-resolution TWS + Random error
• VIC = True high-resolution TWS + Model error + Random error

Work this year focused on sensitivity of results to model/error assumptions.

b)

Figure: Example TWS data from GRACE (a) and VIC historical run (b) 
for April 2012 with corresponding combined TWS estimate (c) and high-
resolution standard error (d). 
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Particle Volume Size Distribution: Errors and Error Bars

Same as (d), 
log scale

Instability (nonlinearity?)
in the retrieval
especially at larger sizes
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