
MAARS
Machine learning-based Analytics for Automated Rover Systems

Principal Investigator: Hiro Ono (347F) 

Brandon Rothrock (347J), Kyon Otsu (347F), Yumi Iwashita (347J), Shoya Higa (347F), Jacek Sawoniewicz (347F), Annie Didier (1761), Tanvir Islam 
(386G), Vivian Sun, Chris Mattmann (1761), Virisha Timmaraju (1761), Olivier Lamarre (347F intern), Bhavin Shah (1761 intern), Katie Stack (3223)

Poster No. RPC-126           

Publications:
Journal
• Higa, S., Iwashita, Y., Otsu, K., Ono, M., Lamarre, O., Didier, A., Hoffmann, M. To 

appear in Robotics and Automation Letters (RA-L) and IROS, 2019 
Conference
• M. Ono, B. Rothrock, C. Mattmann, T. Islam, A. Didier, V. Sun, D. Qiu, P. Ramirez, K. 

Grimes, G. Hedrick, and C. Laporte, “Make Planetary Images Searchable: Content-
based search for PDS and On-Board Datasets,” LPSC, 2019 

• M. Ono et al., MAARS: Machine learning-based Analytics for Rover Systems, to be 
presented in IEEE Aerospace, 2020

Invited talks
• B. Rothrock “Making Planetary Images Searchable,” AI4Science Workshop, Feb 2019
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Project Objective - Develop, test, and benchmark “killer autonomy apps” for future rovers with HPSC (high 
performance spacecraft computing)

Benefits to NASA and JPL (or significance of results):
• Ground-based search with SCOTI and image similarity immediately deployable on 

PDS
• Potential infusion of ground-based energy optimal route planning into M2020 

extended mission
• On-board infusion to future rovers with HPSC for drastically extending driving 

distance without risking safety or missing science opportunities
• Make high data rate instruments realistic, such as hyperspectral imagers
• Potential enabler for radically new missions such as driving up to the Southern 

Highland or go through the layered ice deposit on South Polar Cap
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Capability 1: Drive-by Science
• Convert rovers with no scientific instruments 

(e.g., Sample Fetch Rover) to a science rover 
by allowing scientists to instruct the rover to 
find geological features in its navigation 
camera images

• Overcome comm rate limitation with on-
board data interpretation, deep 
summarization, and triage   

. . . .

Capability 2: Risk/Resource-aware AutoNav
• Enhanced safety assessment with onboard 

terrain classification and slip prediction
• Energy-optimal path planning
• Onboard terrain, slip, and driving energy 

prediction by combining deep learning and 
terramechanics model
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Auto-generated image captions by 
SCOTI on validation set

• Network trained with ~3,000 annotated images created by a geologist
• Training & validation sets contain NAVCAM and MASTCAM images from MSL

Deep Learning on 
HPSC/Snapdragon

Preliminary benchmark results

*Per tile, averaged over 176 tiles created from 3 NAVCAM images. A tile is a 513 
x 513 image.
**Computation time on QEMU is significantly slower than real and highly 
dependent on other processes running on the same machine
***The runtime of MobileNetv2 is on a 214 x 214 image

• Developed toolchains to run TensorFlow 
models on HPSC and Snapdragon

• HPSC: based on TensorFlowLite

• Snapdragon: based on SNPE (Snapdragon Neural 
Processing Engine)

• Successfully deployed SPOC terrain classifier 
(Poster H01) 

• Preliminary benchmark with HPSC Emulator 
(QEMU) and Snapdragon 820

• Ongoing activities: HPSC Deployment of 
SCOTI, Benchmark with Snapdragon 855, 
Network optimization for HPSC

Makes onboard images searchable by keyword or 
image similarity without downlinking raw data

Deep Neural Net
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Image feature vector
(1 - 10KB/image)
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Local planner
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Global planner

Global planner

Plan compression

Decompression

• Ground: Plan optimal routes/schedules to goals 
from anywhere on HiRISE map

• Compress plans and send to rover
• Strategic plans recovered onboard
• Allows quick onboard replanning without 

ground-in-the-loop

Onboard strategic planning
RAND (resource-aware, non-stop driving) 

Energy-optimal AutoNav
VeeGer (vision-based estimation of expending and 

generating energy for rovers)

• Makes onboard prediction of driving energy and 
slip on the surface ahead of the rover

• Used as a cost map for enabling energy-optimal 
path planning

• Semi-model-based approach:
• Front end: Deep net (CNN) for estimating 

terramechanics parameters from images
• Back end: Terramechanics model for 

estimating slip and driving energy
• Tested on Athena Rover in the Mars Yard
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Highway-based plan compression
• Landing sites often have natural “highways” due 

to non-uniform traversability 
• Rover typically ends up with one of highways 

wherever it starts 
• Main idea: Send plans only on highways, 

compute the rest onboard
• Prelim result: ~250 KB for 1 km drive (original 

size: 260 MB)

“Highways”


