

Small Satellite Aerocapture for Increased Mass Delivered to Venus and Beyond

Principal Investigator: Adam Nelessen (313H)

Co-Is: Alex Austin (312D), Bill Strauss (3436), Joshua Ravich (355Z), Bobby Braun (CU Boulder), Paul Wercinski (NASA Ames), Marcus Lobbia (313H), Annika Rollock (CU Boulder), Evan Roelke (CU Boulder)

Program: Topic

Project Objectives:

- Mature the technology of single-event drag modulation flight control for aerocapture at small satellite scale
- Raise TRL to 4 through simulation and experimental validation

FY19 Results:

3.233

3.305

3.247

3.023

3.390

3.287

2819

2820

2816

2821

2822

Ballistic Range Testing

- Experimentally demonstrated clean separation and stable flight for sufficiently high ballistic coefficient ratio
- Identified ballistic coefficient ratios at which recontact can occur

	at launch					free stream				
Shot #	Speed (km/s)	Mach number	Re _D (Flight System)	Re _D (Drag Skirt)	β2/β1	P _∞ (atm)	ր _∞ (kg/m³)	T _∞ (K)	թ _∞ (kg/m³)	Drag Skirt
2815	3.272	12.17	4.55E+05	1.79E+06	1.3	0.150	2.712E-01	297	2.712E-01	Axisymmetric Steel
2818	3.217	11.97	4.48E+05	1.77E+06	1.3	0.150	2.717E-01	296	2.717E-01	Axisymmetric Steel (repeat)

Benefits to NASA and JPL:

- Free mission architects from the constraints of the rocket equation
- Enable mass-efficient, rapid transit throughout the solar system
- Provide a small satellite platform for Venus and Mars exploration
- Pave the way for large-scale aerocapture implementation at Titan, Uranus, and Neptune

Computational Fluid Dynamics

CFD simulations performed in Cart3D compare well with testing data

FY19 Results:

Mechanical Deployable Drag Skirt Development

- 1.5m ADEPT drag skirt stows to a diameter of 0.45m
- Ballistic coefficient ratio of 4.7

PI Contact Information:

Adam.P.Nelessen@jpl.nasa.gov, 4-2499

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

6DOF simulation in DSENDS

• Small pitch and yaw angles at time of separation suggest minimal tipoff risk during drag skirt separation

Publications:

• Austin et. al., "SmallSat Aerocapture: Breaking the Rocket Equation to Enable a New Class of Planetary Missions," 70th International Astronautical Conference, October 2019. (In Work)

