National Aeronautics and Space Administration

Pyroelectric Instrument for Rock Analysis

PI: Christopher Heirwegh (322) Co-Is: Kyle Uckert (398I), Robert Hodyss (322), Abigail Allwood (320) Program: Topical

Introduction and Objectives:

X-ray fluorescence (XRF) instrumentation on spacecraft provides reliable whole rock elemental composition information for **planetary science** investigations.

Pyroelectricity – Temperature change (ΔT) applied to polarized ($\pm z$) crystals (LiTaO₃) breaks down polarization allowing surface charge to flow. Charge build-up on z faces discharges electrons (e⁻) across gap (Fig. 1).^[1] Impact on opposite face produces bremsstrahlung **X-ray emission** (eg. spectrum, Fig. 2). Reversing temperature (- ΔT) reverses emission direction.

The prototype **P**yroelectric Instrument for Rock **Ana**lysis (PIRANA) is an X-ray source developed in this topical R&TD task as an alternative to existing X-ray devices, eg. PIXL and APXS. Pyroelectric devices, examined^[2–4] as potential X-ray sources for elemental analysis, have been developed commercially (eg. Amptek Cool-X)^[5] and for use on exploratory space craft.^[6] **Figure 4:** Data from temperature cycling at upper limit set points: 45, 50, 55 & 60 C (4a) showing cumulative flux across 8 cycles (4b) and individual cycle flux counts (4c).

Table 1: Pressure and crystal separation and Pressure variationtest results showing mean and spread in data.

	Variable	Mean	Std. Dev.	Variation	Fixed Variables
		μ	σ	σ/μ (%)	
Separation	10.4	12656	776	6	
distance (d)	7.5	20839	2051	10	1 µA, 16 mTorr

Objectives: Characterize 2-crystal design (Fig. 1) to **maximize flux**, **upper energy** limit (E_{max}) and emission **stability**, inform future design iterations, develop automated software (Fig. 3) and generate code for whole-rock geo-chemical quantification.

Figure 1: Schematic of 2-crystal mount showing direction of heat, electron and X-ray propagation relative to heating and cooling cycles.

Figure 2: Primary X-ray emission profile fitted using PIQUANT - software used by PIXL. Crystal X-ray lines (Ta K X-rays) and casing lines (Cu, Fe, Cr, Ti) are identified.

Approach:

Observing primary emission (Fig. 2) - cycling $\Delta T \text{ cold} (25 \text{ C}) \leftrightarrow \text{hot} (45 / 50 / 55 / 60 \text{ C})$

1. Vary - pressure

6 / 16 / 26 mTorr in air

- Vary crystal separation distances (d) 5.0 / 7.5 / 10.4 mm
- 3. Build software to automate thermal cycling LabVIEW GUI (Fig. 3)

FY'18 & '19 Results:

Temp. set-point limit:	50 °C	\rightarrow optimal flux - 40 or 60 C less effective	Fig. 4
Pressure:	16 mTorr	\rightarrow optimal stability & flux	Table 1 and Fig. 5
	26 mTorr	\rightarrow optimal E _{max}	Table 1 and Fig. 5
Separation:	5.0 mm	\rightarrow optimal flux & E _{max}	Table 1 and Fig. 6
	10.4 mm	\rightarrow optimal stability	Table 1 and Fig. 6

Flux emitted ~parallel to crystal face ~1/100th MER APXS

National Aeronautics and Space Administration Jet Propulsion Laboratory

Figure 5: 6, 16 and 26 mTorr air pressure comparison on flux (3a) and maximum energy (keV) (3b).

Figure 6: 5, 7.5 and 10.4 mm crystal separation comparison on flux (4a) and maximum energy (keV) (4b).

Conclusions:

Prototype PIRANA results warrant continued development as a reliable X-ray source for future missions. Testing of several variables has illuminated conditions for balancing stability with enhanced flux and maximized energy. Design changes will be considered for further optimization.

Benefits to NASA and JPL:

Development of PIRANA may introduce a new generation X-ray instrument for use onboard exploratory spacecraft. Its **simple design** and **low voltage**, potential **low power** requirements make it advantageous for operation in certain environments (ie. Mars). Any mission, simple to complex, via lander or rover, could utilize this as a source if objectives are realized.

Acknowledgments:

We extend our appreciation to Dr. David Flannery (formerly of JPL) for initiating this task and to summer intern Hannah Munguia-Flores for her assistance on this project.

- **PI:** Dr. Christopher Heirwegh, 1-626-807-5420, Christopher.m.heirwegh@jpl.nasa.gov
- 1. Lang, S. B., Pyroelectricity: From ancient curiosity to modern imaging tool. Physics Today 58 (2005) 31 36.
- 2. Brownridge, J. D. and Raboy, S., Investigations of pyroelectric generation of x rays. Journal of Applied Physics 86 (1999) 640 647.
- 3. Geuther, J. A. and Danon, Y., High-energy x-ray production with pyroelectric crystals. Journal of Applied Physics 97 (2005) 104916.
- 4. Kawai, J. et al., X-ray fluorescence analysis with a pyroelectric x-ray generator. X-ray Spectrometry 34 (2005) 521 524.
- 5. https://www.amptek.com/products/x-ray-sources/cool-x-pyroelectric-x-ray-generator

6. Kim, K.J. et al., An Active X-Ray Spectrometer for the SELENE-2 Rover. Trans. JSASS Aerospace Tech. Japan 12 (2014) 35-42.

