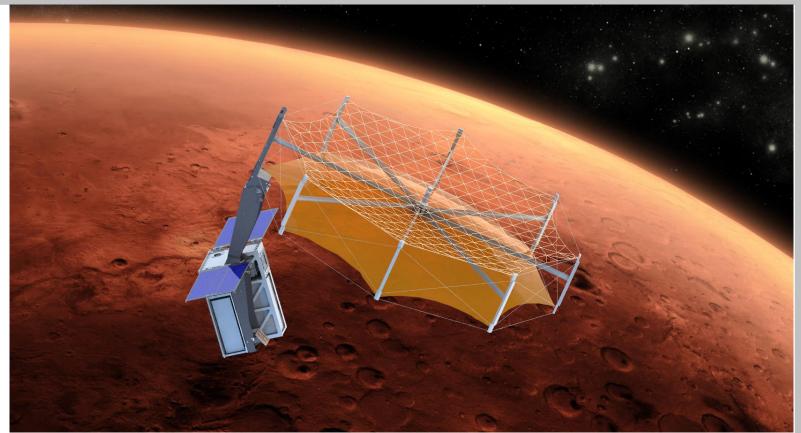
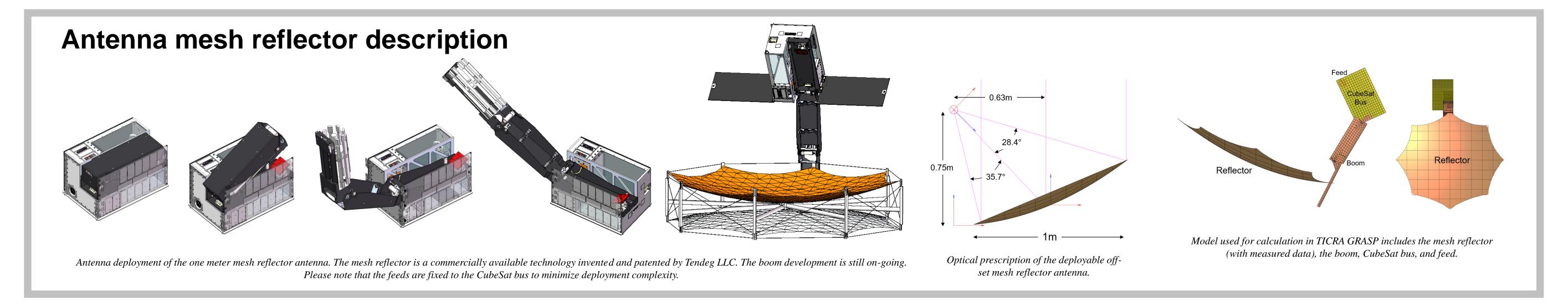
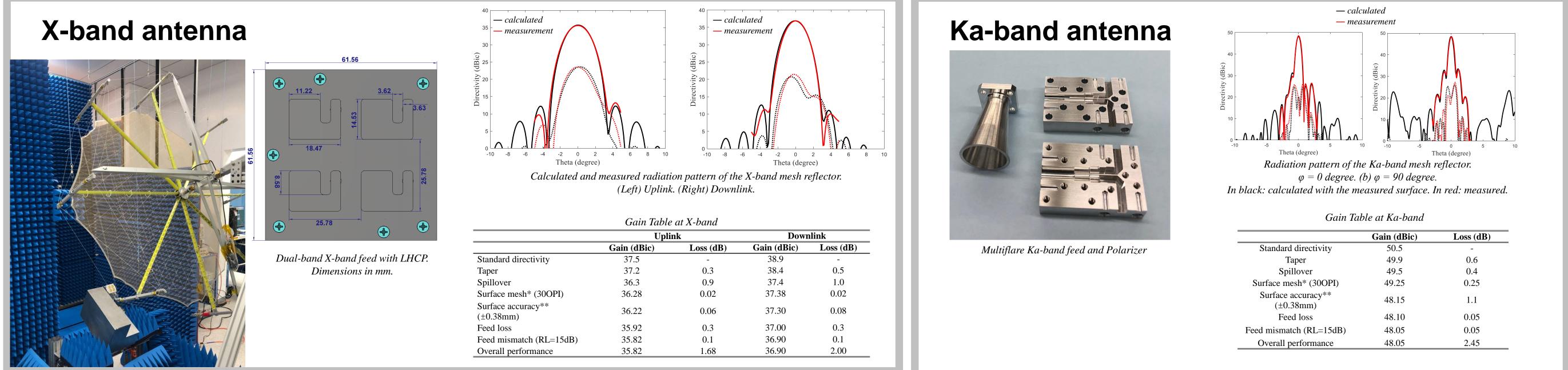


One-meter X/Ka-band Deployable antenna for Small Satellites

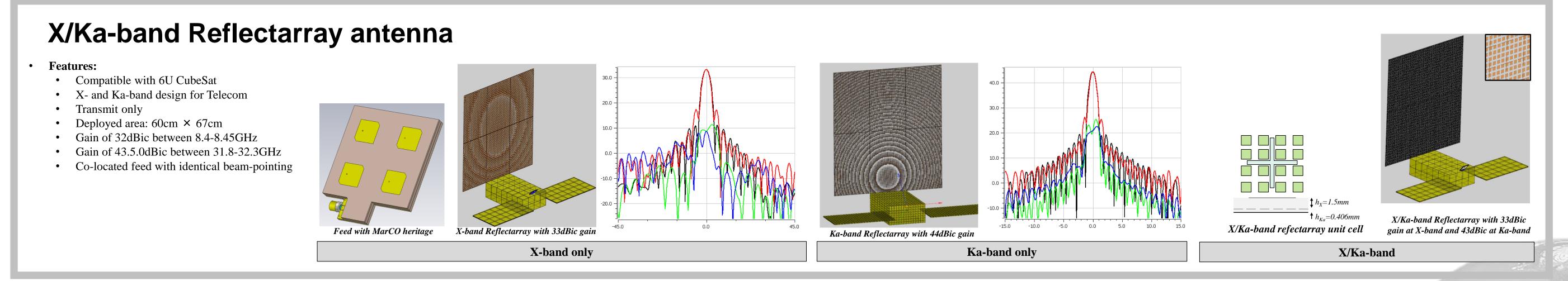

Principal Investigator: Nacer Chahat (337) Co-I: Jonathan Sauder (355), Matthew Mitchell, Neal Beidleman, and Gregg Freebury **Program: Topical R&TD**

Pushing the limits of CubeSats Telecommunication capabilities


The proposed deployable one meter mesh reflector is compatible with 12U-class CubeSat. This antenna is designed for telecommunication and is compatible with NASA's deep-space network (DSN) at X-band (i.e., uplink: 7.145-7.19 GHz; downlink: 8.4-8.45 GHz) and Ka-band frequencies (i.e., uplink: 34.2–34.7 GHz; downlink: 31.8–32.3 GHz).


Three right-handed circularly polarized (RHCP) antennas, both transmit and receive, are introduced here: X-band only, Ka-band only, and X/Kaband. For the X-band only antenna, a gain of 36.1-dBic and 36.8-dBic is achieved at uplink and downlink frequency bands, respectively. This translates into an efficiency of 72% and 62%, respectively. For the Ka-band only antenna, a gain of 48.4-dBic and 48.7-dBic is obtained at downlink and uplink frequency bands which translates to a 62% and 72% efficiency.

This is a significant improvement compared to MarCO's deployable high gain antenna at Ka-band and a significant improvement compared to KapDA at Ka-band. However, it is equivalent to the deployable one meter reflectarray (OMERA) antenna operating at Ka-band which is compatible with 6U-class CubeSats. This adds to the portfolio of JPL's high gain antennas for CubeSat.


Artist rendering of the one-meter X-band deployable mesh reflector antenna

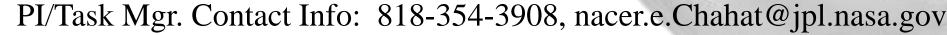
Spillover	36.3	0.9	37.4	1.0
Surface mesh* (30OPI)	36.28	0.02	37.38	0.02
Surface accuracy** (±0.38mm)	36.22	0.06	37.30	0.08
Feed loss	35.92	0.3	37.00	0.3
Feed mismatch (RL=15dB)	35.82	0.1	36.90	0.1
Overall performance	35.82	1.68	36.90	2.00

Surface mesh* (300PI)	49.25	0.25
Surface accuracy** (±0.38mm)	48.15	1.1
Feed loss	48.10	0.05
Feed mismatch (RL=15dB)	48.05	0.05
Overall performance	48.05	2.45

Summary

The need for higher data rate for CubeSats is of uppermost importance to push the limit of their capabilities for deep space exploration. This research effort introduces a novel, highly constrained deployable mesh reflector antenna which is currently the largest antenna compatible with 12U-class CubeSat operating at X- or Ka-band. At X-band, a gain of 36.1-dBic and 36.8-dBic is achieved at uplink and downlink frequency bands, respectively. This translates into an efficiency of 72% and 62%, respectively. For the Ka-band only antenna, a gain of 48.4-dBic and 48.7-dBic is obtained at downlink and uplink frequency bands which translates to a 62% and 72% efficiency.

We also designed a dual frequency deployable reflectarray (60cm × 67cm) which provides identical beam pointing using two collocated feeds. A gain of 33dBic is achieved at X-band (i.e. +4dB compared to MarCO) and 44dBic at Ka band (i.e. +2dB compared to KapDA/Raincube). The reflectarray design can tune the antenna beam pointing. Hence, one can imagine using this antenna for telecom at X-band and radar at Ka-band with different beam pointing without changing the structural design of the antenna.


National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Patent pending: Chahat et al. "High-efficiency dual-band circularly-polarized antenna for harsh environment for Telecommunication", US 2019/0190163A1, Jun. 20, 2019. Patent: (not funded by this effort) G. Freebury, N. Beidleman, "Deployable reflector," US patent US20170222308A1, Jan. 28, 2016. Publication: Chahat et al., "One-Meter Deployable Mesh Reflector for Deep Space Network Telecommunication at X- and Ka-band," in press, in Trans. Antennas Propag., 2019. Publication: N. Chahat et al., "Advanced CubeSat Antennas for Deep Space and Earth Science Missions: A Review," IEEE Antennas and Propagation Magazine, Sept 2019. Book Chapter: N. Chahat et al., "X/Ka-band One Meter Mesh Reflector for 12U-class CubeSat," Wiley, in press, 2020.

Book: N. Chahat, "CubeSat Antennas for Deep Space and Earth Science missions," Wiley, in review, 2020.

