Pulsar Based Navigation for Deep Space and Planetary Missions

Principal Investigator:David S. Bayard (343)Co-Investigators:Walid A. Majid (335), F

David S. Bayard (343) Walid A. Majid (335), Po-Ting Chen (343), Lincoln J. Wood (392) Prof. Jason L. Speyer, UCLA Dept. of Mechanical and Aerospace Engineering Ben Dunst, Luis Andrade, UCLA Graduate Students

Program: R&TD Topic

PROJECT OBJECTIVE

Develop new concepts, algorithms and analysis tools to support pulsar-based deep space navigation

- Investigate alternative clocks for pulsar navigation, including USO and Cesium atomic clocks, and pulsar-aided timing to improve clock accuracy
- Develop special covariance analysis tools (CAT) suitable for evaluating long-horizon navigation performance (10-15 years)
- Apply CAT tools to analyzing PNAV performance trade-offs pulsar observing time, pulsar receiver SNR, and average mission thruster activity

BACKGROUND

- Pulsar-Based navigation is similar to the idea of GPS-based navigation but it operates in <u>deep space</u> with <u>X-Ray Pulsars</u> playing the role of GPS satellites
- Called out as a key technology in 2015 NASA Communication and Navigation Systems Roadmap

BENEFITS TO NASA and JPL

- Provides autonomous deep space navigation with minimal ground resources
- Position knowledge independent of distance to Earth
- Ideal for deep space and interstellar missions
- Improvement to DSN accuracy over distances greater than 5 AU (orbit of Jupiter)
- Reduced reliance and demand on the DSN

NEW TECHNOLOGY

- NTR # 50323 An Algorithm for Pulsar-Based Deep Space Navigation
- NTR # 50984 A Particle Filtering Algorithm for Resolving Integer Ambiguity in Pulsar-Based Navigation

PUBLICATIONS

- Frequency Stability Analysis of Pulsar-Aided Clocks NAVIGATION, Vol. 66, No. 3, 2019
- Autonomous Spacecraft Navigation Using X-Ray Pulsars and Multirate Processing, J. Guidance, Control, and Dynamics, Vol. 40, No. 9, Sept 2017
- Aspects of Pulsar Navigation for Deep Space Mission
 Applications, submitted J. Astronautical Sciences
- Experimental Verification of a Pulsar-Based Positioning System Using L-Band Measurements, submitted J. Guidance Control and Dynamics

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

www.nasa.gov

Copyright 2018. All rights reserved.

PI/Task Mgr. Contact Informatio David S. Bayard 818-354-8208 david.bayard@ipl.nasa.goy

FY18/19 Results Pulsar Navigation Covariance Analysis Tool

High Fidelity Clock and Pulsar Drift Modeling

- High fidelity clock and pulsar drift models
 for more accurate long-term analysis
 - Developed rational approximation of fractional noise for both pulsars and clocks to allow more realistic behavioral models over 15 year horizon
- Closed-form integrals in covariance analysis to significantly reduce computation time
- 15 year analysis now performed in 2 min
- Analyzed AUTONOMOUS CRUISE for longduration missions

Performance for 15 Year Autonomous Cruise (no DSN)

15 Year Mission, Noise=1*Cassini

		Weekly Observing Hours							
	S/N	2	4	ļ	8	16			
	1/56	114.38		89.09	70.62	54.45			
	8/56	54.54		43.75	36.56	30.26			
	32/56	36.25		30.49	27.12	24.28			
	1	31.83		27.41	25.03	23.07			

Initial Conditions

- Initial Position Error (x, y, z) 1-σ: 50 km
 Initial Velocity Error (x, y, z) 1-σ: 1 m/s
- Initial Clock (USO) Bias Error 1-σ : 50 μs
- Initial Clock (USO) Bias Rate Error 1-σ : 1x10⁻¹⁰ s/s
- Initial Pulsar (all) Bias Error 1-σ : 5 μs
- Noise Parameters
- Velocity Random Walk PSD σ^2 : (4.0739x10⁻¹⁰ m²/s) x ξ^2 • Scaled by ξ^2 : $\xi = [1, 2, 4, 8, 16]$
- Pulsar Observation
- Duration of Observation : 30 (minutes)
 Time Allocated to Slewing : 10 (minutes)
- Hours/week of Observations and Slewing (combined)
 [2, 4, 6, 8, 10, 16] Hours/week

Velocity Error (m/s): RSS 1-sigma

15 Year Mission, Noise=1*Cassini											
Weekly Observing Hours											
S/N	2	4		8	16						
1/56	0.0343		0.031	0.0282	0.0255						
8/56	0.0264	(0.0233	0.0211	0.0191						
32/56	0.0223	(0.0192	0.0174	0.0158						
1	0.0209	(0.0177	0.0161	0.0146						

Blue Box: Shows PNAV has accuracy of 89 km and 3.1 cm/sec for 15 year cruise (no DSN) assuming USO clock, Cassini-level thruster disturbances, 1/56 NICER photon collection area, and 4 hrs/wk pulsar observations Poster No. RPC-174