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Project Objective:
This task developed and validated onboard 
methods to increase science return for the 
Europa Clipper mission by prioritizing data 
based on its content and enabling 
coordinated observations of new discoveries.  

FY’19 Results:
1. Thermal anomaly detection in simulated E-THEMIS data

2. Plume detection for the Europa Imaging System (EIS) using analogue data

3. Plasma event detection for the Plasma Instrument for Magnetic Sounding (PIMS) using analogue data

4. Coordinated science scenarios: We identified eight scenarios for onboard coordinated science [5].  An example 
would be a hot spot detection by E-THEMIS triggering an image by EIS or a higher sampling rate for the REASON 
radar instrument.

Benefits to NASA and JPL 
(or significance of results):
• Expands science autonomy to outer planets
• Direct benefit to Europa Clipper
• Also benefits future missions to remote 

bodies (Enceladus, Titan)
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�.� Magnetospheric Crossings

191 labelled crossings across the magnetosphere and the magnetosheath of Saturn were ob-
tained from [5]. Figure 3 shows how the electron population differs in these two environments
— the magnetosheath is characterized by high energy electrons, but in the magnetosphere,
these are shielded away by the stronger magnetic field. We refer to the observation taken on
June 28

th
2004 as the ’crossings’ dataset.

Figure 3: CAPS ELS Data on June 28
th

2004, indicating 7 different crossings, marked as red bars.
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�.� RuLSIF [6] (Relative Unconstrained Least Squares Information Fitting)

Given two probability density functions p(t) and q(t), we define their alpha-mixture probabil-
ity density as,

pq↵(t) = ↵ ⇤ p(t) + (1-↵) ⇤ q(t)

their alpha-relative probability density ratio as,

p(t)

pq↵(t)
=

p(t)

↵ ⇤ p(t) + (1-↵) ⇤ q(t)

and their alpha-relative PE-divergence as,

DPE↵(p || q) =

Z+1

-1

✓
p(t)

pq↵(t)
- 1

◆2

q(t)dt

The alpha-relative PE-divergence indicates how different the distributions represented by p

and q are; it equals 0 whenever the densities p and q are identically equal.
RuLSIF aims to solve the following problem: Given two sets of samples from two distribu-

tions with probability densities p and q, identify the alpha-relative probability density ratio.
Once the density ratio is known functionally, the PE-divergence of one distribution with re-
spect to the other can be estimated.

Using the alpha-relative PE divergence provides certain advantages over just the PE-divergence,
for change-point detection. One of the reasons for this is that the alpha-relative PE-divergence
is always bounded, making it easier to model by a kernel model. This makes RuLSIF more
robust than its precursor uLSIF, which estimates the ordinary probability density ratio, and
the ordinary PE-divergence between two distributions. Note that the alpha-relative probability
density ratio reduces to the ordinary density ratio when alpha is 0.
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�.� Crossings Dataset

We labelled the 7 crossings, as obtained from [5], as change-points.

Figure 23: A composite ROC curve obtained from all the algorithms’ predictions on the crossings dataset.
The error window was set to 300 seconds.

Figure 24: A composite PR curve obtained from all the algorithms’ predictions on the crossings dataset.
The error window was set to 300 seconds. The AUPRC baseline is 0.0978.
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Data: 100,000 simulated 
E-THEMIS observations of 
Europa from different flyby 
altitudes, with synthetic 
anomalies injected (varying 
the size and temperature).

Results: Anomaly detection 
(true positive rate) given a 
limit of 5% false detections.  
Anomalies as cool as 150 K 
and as small as 20% of a 
pixel can be detected 95% 
probability [4].

Data: 308 images of Mercury, Europa, Io, and 
Enceladus with and without plumes.
Method: Fit a circle to the limb, then detect unusual 
amounts of bright pixels in annulus [3].

Results: Adaptive threshold 
(based on inter-quartile range of 
intensity values) out-performs a 
fixed threshold, yielding 80% true 
positive rate (TPR) with only 36% 
false detections [4].  The limb 
could not be found in ~15% of 
images, which limits the upper 
bound on TPR to 85%.

Potential increase in science return: 
The APGen simulator indicates that the 
EIS NAC could collect 2-30X additional 
observations with minimal resource impact.  
Given different assumed prior plume 
probability, we calculated the increase in 
science return (number of plumes observed) 
that could be achieved by collecting more images and analyzing them onboard.
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Data: Cassini CAPS ELS (electron 
energy spectrum) data with 191 
labeled events in which the spacecraft 
crossed from Saturn’s magnetosphere 
to its magnetosheath (or back).
Method: Time series analysis to find 
“change points” (RuLSIF), anomalies 
(matrix profile), or state changes 
(HMM).

Results: Matrix 
profile yielded best 
performance at 
detecting boundary 
crossings.
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