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To expand the scope of the currently conceived and developed deep
space optical communications (DSOC) transceiver to include on-board

astrometry functions to enable autonomous optical navigation (OpNav). Base Assumptions:

DSOC performance cannot be compromised when adding astrometry

* Uplink acquisition and pointing: The PCC must accurately detect
and track the uplink beacon from Earth as a pointing reference, so that
the downlink can be precisely pointed to the ground receiver. Required
background mitigation techniques include lock-in detection of the
beacon modulation and spectral filtering with a 1-nm bandpass filter.
Adding astrometry cannot degrade the uplink acquisition accuracy.

Stray Light: Stray light for DSOC is limited with a 1-mrad field stop at
the entrance to the aft optics. This is too narrow for OpNav. This work
acknowledges the need for a larger field stop (e.g. dichroic field stop
with a larger FOV for OpNav), but does not yet have a recommended
detailed design. Adding astrometry cannot increase stray light

Design Challenge:

The challenge is to address design deficiencies in current deep space

optical transceivers, namely by: (i) providing a large (~10x10 mrad?) field-

of-view (FOV) focal plane; (ii) sensors with broadband sensitivity to detect

visible Magnitude 9 asteroids with integration times of ~1 second. By .
contrast, the DSOC optical transceiver under current development has a

256 pyrad FOV and uses a photon-counting sensor with very fast temporal
response (~ 2 ps) and a spectrally narrow filter with a noise-equivalent
bandwidth of 1 nm centered at 1064 nm.
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* Focal Plane Array
— 10MegaPixels
— CCD Array
— Visible wavelengths, broadband

— >1s frame rate
* Simple read-out circuit

* Focal Plane Array
— 32x32 pixel
— InGaAsP Geiger-Mode APD
— NIR, 1.3 ym-cutoff, 1-nm bandpass

— 2us frame rate, 2ns time resolution
+ Complex, timing-sensitive read-out circuit

Approach and Results:
Considered three options for implementing an on-board astrometry capability for DSOC

Option 1 - Single detector concept Option 2 - Hybrid detector concept

Option 3 - Separate detector concept
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» Use PCC (“as-is” or larger) for OpNav and communication « Use InGaAs FPA for astrometry and beacon acquisition
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* High spectral loss from limited PCC detection bandwidth

High spectral loss prohibits use of PCC for OpNav. x

Benefits to NASA and JPL (or significance of results):

* Loss increases required object brightness for OpNav

beacon onto the center quad cell
* Requires step-stare scan pattern for uplink acquisition
* Removal of the 1-nm filter significantly reduces acquisition SNR by >20dB!

* The 1nm bandpass filter on the center
quad can reject the earth illumination
and acquire the beacon

Narrowband filter required for uplink acquisition prohibits hybrid detector x
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The significance of this R&TD research is that astrometry and communication can be supported in
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a future DSOC terminal sharing a common large aperture. However, due to opposing design
requirements, optical navigation and communication shall be implemented with separate back-end
optical channels with dedicated detectors. Optical navigation should be viable for magnitude 9
asteroid targets within the solar system based on preliminary signal-to-noise calculations in this
feasibility study. Future work is to proceed with the detailed optical design of the optical navigation
channel and develop a compatible concept-of-operations with communications.
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