National Aeronautics and Space Administration

A Modeling Language for
Next Generation Flight Software

Principal Investigator: Klaus Havelund (348B)

Project Objective:

The objective of this work is to explore how to
improve the reliability of flight software produced at
JPL, as well as improving the productivity of
programmers. This objective is to be seen in the
context of JPL’s increased focus on autonomy, which
will result in development of increasingly complex
software systems. Flight software is currently
developed in the C programing language. We argue
that this language is too low-level for the
development of the next-generation complex
autonomous software systems with millions of lines
of code, and additionally is unsafe due to weak
guarantees provided by the standard C compilers.
Our goal is to replace C with a higher-level safer
language for programming flight software. In
addition, this language should be supported by
advanced testing, monitoring, formal verification, and
visualization technology to assist programmers in
ensuring that programs are correct with respect to
requirements. We also address the modeling activity
which normally precedes coding. In the current
approach to software design, early high level designs
are described informally in Word and PowerPoint,
and crucial implementation challenges are only
uncovered when the developer starts to implement
the informal design as low-level C code. This
approach makes complex software hard and
expensive to write, as crucial design flaws are often
not uncovered until late testing of the C code,
requiring late changes and workarounds. It is
therefore an additional goal to provide a language in
which flight software can be modeled as well as

programmed.

Benefits to NASA and JPL.:

Software (counted in lines of code) on e.g. the Mars
rovers grows from mission to mission. Assuming a
fixed error count per line of code (1 error per 1000
lines is occasionally used as an estimate), the
Increasing line count means an increased error
count. It is therefore desirable to keep the line count
down. This can be done by using more modern

programming technology, such as a more modern
programming language. The increased focus on

autonomy at JPL exacerbates this issue. It is
questionable whether JPL can continue coding these
complex systems in C. The project will assist JPL in

orienting itself towards a new way of writing flight
software, resulting in increased programmer

productivity and increased reliability.

Robert Bocchino (348C)
Program: Topic

FY18/19 Results:

1. We performed a study of the three programming

languages Rust, Swift, and Scala as candidates for

development of flight software. We performed a study of a selection of frameworks for building domain-specific
languages (DSLs), including Racket, Rosette, MPS, and mbeddr. We performed a study of a selection of
frameworks for formally verifying programs, including Stainless, Logika, and Viper.

2. We compared the programming languages Rust and Scala on three non-trivial case studies, including (i) the
Remote Agent plan execution engine that flew the Deep-Space 1 spacecraft, (ii) a file transmission protocol, and
(iii) the F Prime (F’) component-based framework (originally written in C++ by the Small Scale Flight Software

group 348C).

3. We augmented the F’ Scala implementation with three other DSLs for creating respectively (i) hierarchical state
machines, (ii) temporal logic monitors, and (iii) non-deterministic rule-based tests.

4. We evaluated, based on the experiments above,

future approaches to achieving the objective of lifting

programming to a higher abstraction level. Out of the investigated languages, Apple’s Swift language looks like

the most promising replacement for C for embedded programming, long term.
5. We organized a workshop with the title “Towards a Unified View of Modeling and Programming’at ISOLA'18,

November 5-6, 2018, Cyprus. Leaders in the fields of modeling and programming were invited to present.

// F° Component DSL:

class Imaging extends Component

val i_cmd = new CommandInput

val i_cam = new Input|CameraZImaging
val o_cam = new Output| ImagingZCamera
val o_obs = new ObsOutput

o_cam.invoke(Open

// Hiarchical State Machine DSL:
object exposing_light extends state(exposing, true
entry

o_cam.invoke(Open
setTimer(duration

exit
o_cam.invoke(Close

when
case ReceiveTimeout =>
1t (getTemp DARK_THRESHOLD) exposing_dark

else saving

// Monitor DSL:
object SaveOrAbort extends Monitor|Observation
always
case EvrTakeImage(_) => hot
case EvrImageSaved | EvrImageAborted => ok
case EvrTakeImage(_) => error

// Rule DSL:
object TestRules extends Rules
rule("TakeImage' imageCount < MAX_IMAGES
o_cmd. invoke((TakeImage(imageCount
imageCount += 1

rule("ShutDown' shutdownCount < MAX_SHUTDOWNS

o_cmd. invoke(ShutDown
shutdownCount 1

Stay, Buy or Develop Pros Cons

easy - no work language is unsafe

Stay with C

tested by many
low education effort
programmers available

weak support for programming in the large
programming is low level
concurrency not built-in

relatively easy to do
reliance on community
tested by many
low education effort
programmers available

Buy GPL

Develop new GPL we have full control

easier to develop tools

no obvious candidate

hard to do
no reliance on community
not tested by many
high education effort
no programmers available

National Aeronautics and Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

WWwWw.nasa.gov

Copyright 2019. All rights reserved.

C | Rust | Swift | Scala

Absolute speed Y| Y y

Low memory footprint Y | Y

Machine level Y y)
Memory management !) ¢)
Concurrency) Y
Consistent timing behavior

Strong static typing b 4 y y
Information hiding Y X X
Object-orientation X X
Functional programming Y X) §
Collections Y) 4) 4
Extensible Y y
Specification constructs y
Easy integration with C Y y y

Easy to learn Y X y

Spacecraft
2 —— S
Control ~ _— L H]
Com nhg_l/dx Achieve /_,_/—-" \
» s Property -~ B\ Monitors
v 7~ \
Tasks Property Locks \
g e e | UK 10 Y
\\ /
__/_‘_;_\ B| ON Database
= [C| O = =
ki 0 2 S i _ Lock
S Subscribe ~_Event
> | Z | OFF \
538 |
//I/' /| ;
/ Task /) —
\\ Interrupt Pl ol
— \ . &
P B N P R -~ Update
@) T (\\ [vent
Maintain Properties
Daemon
o / \ R
. > < . >
Sender Receiver
- —=
IND_ERR

sys_i_Instance B
i_int _

: ! : .]

E} o_cmd i_cmd g H

' 4 I

i_obs H :

A camera _ . ' ' : :

i o_ob;ﬁ ! o_obs i

I T e e e e P S S o o 2 I

I 4 I

|
. 1 4_<| :
] . ! ' -
! o_img i_cam !
] &]
: > > :
] ' ! I
: i_img , 0_cam :
1 | - I
L R O R TR Ry R ARSI T IR TR TLS B i e i l
)

Publications:

[1] Modeling with Scala.
Klaus Havelund and Rajeev Joshi.
ISoLA 2018, Lecture Notes in Computer Science volume 11244,

[2] Towards a Unified View of Modeling and Programming.
Manfred Broy, Klaus Havelund, Rahul Kumar, and Bernhard Steffen.

ISoLA 2018, Lecture Notes in Computer Science volume 11244,

Pl/Task Mgr. Contact Information:

Phone : 818-354-5418
Email : klaus.havelund@)jpl.nasa.gov

Poster No. RPC-131

