

Observational System for Constraining Clouds and Precipitation in Atmospheric Models

PI: Kay Suselj (398) **Co-Is: Matthew Lebsock (329) & Mathias Schreier (329)** (Topic Area RTD)

Project Objective:

Representation of turbulence, clouds and convection are one of the most uncertain parts of climate and weather prediction models.

FY18/19 Results:

Ingredients:

- 1. JPL Stochastic multi-plume Eddy-Diffusivity/Mass-Flux (EDMF) parameterization, represents unified boundary layer, shallow, deep convection and microphysical parameterization (Suselj et al., 2019a,b):
- Decomposition of subgrid-scale motion into (i) multiple convective plumes (surface-forced updrafts and evaporatively-driven downdrafts) and (ii) non-convective environment

- most sensitive to? Computationally efficient monte-Carlo based Morris-one-at-the-time method (MOAT, Posselt et al., 2019), result value μ - impact of
 - parameter on the quantity of interest (QI).

Methodology and results:

For each QI compute rank of μ and μ value normalized by its range $(R\mu)$

1. **Parameter screening**. To which key parameters are the EDMF results

Rank of μ (left) and normalized range $R\mu$ corresponding to model parameters for different QIs (x-axis)

Questions to be answered:

- What physical variables should future observational systems measure to constrain these highly uncertain processes in climate and weather prediction models?
- What is the minimum requirements (i.e. vertical resolution and error characteristics) for these measurements to provide meaningful constrain for atmospheric models?

Benefits to NASA and JPL (or significance of results):

Help define priorities for

- Microphysical processes coupled to subgrid scale dynamics
- Strong interaction between convective microphysics and plume dynamics, consistent assumptions about subgrid-scale distributions of thermodynamic and kinematic variables
- 14 model parameters with (somewhat) uncertain values associated with • uncertainty of subgrid-scale processes (see table below)

Schematics of the three convective types represented by the EDMF parameterization.

Model parameters in the EDMF parameterization.

Parameter	Range	Default	Short description
		Mε	ass-Flux component
a_u	0.05 - 0.5	0.15	Updraft area at the surface
ϕ	0 - 6	2	Factor in lateral entrainment rate parameteriza- tion (Eqs. 7 and 8)
N	2 - 100	10	Number of updrafts
s_f	0.5 - 2	1	Factor representing intermittence of entrainment rate (Eq. 7)
$c(w,q_t)$	0.2 - 1	0.32	Correlation coefficient between w and q_t in the surface layer
$c(w, heta_v)$	0.2 - 1	0.58	Correlation coefficient between w and θ_v in the surface layer
w_b	0 - 3	1.5	Coefficient in updraft vertical velocity equation (Eq. 5). Parameter w_a is constrained with Eq. 6.
$lpha_w$	0.3 - 3	1	Factor in surface σ_w equation
$lpha_{q_t}$	0.3 - 3	1	Factor in surface q_t equation
$lpha_{ heta_v}$	0.3 - 3	1	Factor in surface θ_v equation
		Eddy-	Diffusivity component
a_N	10^{-3} - 10^{-1}	0.07	Coefficient in stability dependent formulation for diffusive length scale.
a_{diff}	0.5 - 5	3	Coefficient for diffusive length scale.
a_{diss}	0.5 - 5	1	Coefficient in dissipative length scale (Eq. 14)
		Co	ondensation routine
a_s	0.1 - 5	1	Dissipation rate for momentum and Thermody- namic variables used in $\overline{s's'}$ equation

Main results:

- All QIs are highly sensitive to the values of parameters controlling updraft properties (ϕ and w_b).
- Most QIs are moderately sensitive to parameters s_f and α_w .
- 2. Measurement constrain for parameter values. Which physical variable best constrains influential EDMF parameters?
 - Perform EDMF simulation for the parameter space defined by four influential parameters
 - For each EDMF simulation compute probability that simulated quantity is consistent with measurement, assign distribution to parameter values
 - Estimate posterior distribution of parameter value given the uniform prior

Posterior parameter distribution given measurements of certain physical parameters (represented with lines) and prior (bars)

future Earth observing capabilities driven by the need to improve important aspects of atmospheric models and understanding of the Earth's atmosphere

Help define the need for observational technology development

PI/Task Mgr. Contact Information:

kay.suselj@jpl.nasa.gov

818 354 0897

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

- 2. Case study Diurnal cycle of non-precipitating continental convection (ARM case, Brown et al., 2002)
- 3. Proxy for measurements large-eddy-simulation (LES) data for the studied case.

References:

- Brown, A., et al. (2002). Large-eddy simulation of the diurnal cycle of shallow cumulus convection over land. Q J Royal Met Soc. 128, 1075-1093
- Posselt, D. He, F., Bukowki, J. and Reid, J. (2019). On the Relative Sensitivity of a Tropical Deep Convective Storm to Changes in Environment and Cloud Microphysical Parameters. J. Atmos. Sci. 76(4), 1163-1185
- Suselj,K., Kurowski, M. & Teixeira. (2019a). On the Factors Controlling the Development of Shallow Convection in Eddy-Diffusivity/Mass-Flux Models. J. Atmos. Sci., 76(2), 433-456

Main results:

- Parameters ϕ and w_b can be well constrained with observation of temperature and water vapor profile, other potential observations provide little constrained.
- Most observations cannot constrain parameters s_f and α_w (their impact on model results is too low).
- Measurement requirements. What is the required vertical resolution and error of measurements?
- Repeat parameter estimation (step 2) with decreased vertical resolution and random error of measurements
- Criteria characterizing impact of measurements: (i) Most probable value ulletof parameter, (ii) $dP = 100 * \max[(P_{post} - P_{prior})/P_{prior}]$ where P_{prior} and P_{post} are prior and posterior parameter distributions.

dP (red lines) and most probable parameter values given observation of water-vapor (left) and temperature (right) profile as a function of *measurement error (x-axis) and vertical resolution (y-axis)*

Main results:

• For $dP \ge 20$ the measurements seem to provide reasonable constrain to

