

Nanostructured High Energy/High Power Electrodes for Swarm **Spacecraft Energy Storage**

Principal Investigator: Erik J. Brandon (3460) Co-Is: Keith Billings (3463), Charlie Krause (3463) and Jasmina Pasalic (3463) **Program: Innovative Spontaneous Concept**

Background and Project Objective:

- There is growing interest in the application of very small spacecraft, particularly for swarm-based architectures smaller than the traditional 1U form factor (1000 cm3 and 1 kg)
- Providing adequate energy and power (particularly for functions requiring burst power such as communications) are very difficult to achieve in such small units, where traditional lithium-ion cells can be larger than the spacecraft themselves
- An ideal technology offers a blend of high energy and high power capability over wide temperatures, to provide sufficient energy (for eclipse periods) as well as support burst power needs.
- The objective of this proposal was to develop a electrode system with a high specific capacity and high operating voltage supporting high rate and low temperature operations.

Technical Approach and Results:

- Using nanostructured active materials combined with careful electrode design and processing can support both high energy and high power capabilities
- Cells were built with both JPL-fabricated and commercial electrode.
- NCA for JPL-fabricated cathodes was procured from MTI corp. and Sigma-Aldrich

- Graphite used in JPL-coated electrodes was from Mitsubishi MPG70
- NCA and graphite electrodes were from Saft
- Electrodes were coated onto very thin aluminum (20µm) and copper (10µm) foil substrates for the cathodes and anodes
- A layer of colloidal carbon ink was applied to the foil to provide a better conductive path and adhesion surface
- The active material was sprayed onto the dried carbon ink layer as a slurry of NCA or graphite, Super P carbon, and polyvinylidenedifluoride (PVDF) (85:10:5 wt%).
- Total electrode loadings tested ranged from 5 20 mg cm⁻² coated on a single side of the foil substrate.
- For multilayer cells, this process was repeated on the backside of some electrodes

Cell Name	Cathode	Anode	Cat. loading (mg/cm ²)	Anode loading (mg/cm²)
SWA-01	NCA (JPL)	Graphite (JPL)	10.01	5.43
SWA-02	NCA (JPL)	Graphite (JPL)	10.93	6.28
SWA-03	NCA (JPL)	Graphite (JPL)	7.14	4.50
SWA-04	NCA (Saft)	Graphite (Saft)	18.66	7.62
SWA-05	NCA (JPL)	Graphite (JPL)	9.14	7.03
SWA-06	NCA (JPL)	Graphite (JPL)	9.17	7.38
SWA-07	NCA (JPL), blade coated	Graphite (JPL), blade coated	18.29	10.54
SWA-08	NCA (JPL), blade coated	Graphite (JPL), blade coated	18.25	11.31
SWA-09	NCA (Saft)	Graphite (Saft)	16.86	5.25
SWA-10	NCA (Saft)	Graphite (Saft)	17.08	5.48
SWA-11	NCA (Saft), 2 layers	Graphite (Saft), 2 layers	10.2	9.76
SWA-12	NCA (Saft), 2 layers	Graphite (Saft), 2 layers	10.15	9.75
SWA-13	NCA (Saft), 2 layers	Graphite (Saft), 2 layers	10.26	9.76
SWA-14	NCA (JPL), 2 layers	Graphite (JPL), 2 layers	12.85	5.01
SWA-15	NCA (JPL), 2 layers	Graphite (JPL), 2 layers	16.79	5.78
SWA-16	NCA (JPL), 2 layers	Graphite (JPL), 2 layers	13.72	5.31

 Table 1.
 Summary of cell and electrode build data

Figure 2. Pulse response at 1C rate in 90mAh capacity pouch cell.

120

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology

Significance of results:

Figure 3. Discharge curves of cell SWA-13 in continuous mode and pulsed mode.

www.nasa.gov

- Excellent high pulse power capability of electrodes, with good voltage response under pulse and continuous
- discharge conditions Will continue to pursue electrodes designs in FY20 collaboration with Deutsches Zentrum für Luft- und Raumfahrt

(DLR, Germany), for potential scale-up and future infusion

