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Result 2: Instability Under Isolated Reciprocity 
A formation is said to have reciprocity if there exist bidirected edges between any two 
agents. In formations with isolated reciprocities, no two reciprocal connections are 
adjacent. Below are the two reciprocal connections analyzed in this project.

Result 1: Relative Error Dynamics and the Graph Laplacian
The following equation concisely captures the combined relative error dynamics of all the 
agents and the topology of their connectivity. This equation is the initial step in the 
stability analysis of multi-agent systems with linear dynamical entities.

The dynamic matrix shows that formation does not inherit stability from its entities; the 
matrix is not upper triangular. Create a coordinate transformation W to investigate the 
instability.  
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Combined Dynamics

Digraph Laplacian

Result 3: A General Transformation to Investigate Stability
In complex formation networks, the transformations, as mentioned in Result 2, are 
challenging to obtain. We propose a general transformation to the eigen space of the 
digraph Laplacian, making the stability analysis of complex networks easier.
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Instabilities due to reciprocal connections can be inferred from the digraph Laplacian, the 
following example demonstrates this for tandem reciprocity.

Dynamic matrix for Tandem reciprocity Transform matrix 
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Spectrum of L

V-Formation with no reciprocity 
showing stable behavior.
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Result 4: Restore Stability using Adaptive Key Components
Many times, in complex formation network topologies, it can be difficult to find fixed 
output feedback gains to guarantee stable error dynamics. We introduce the concept of 
an adaptive-key-components to restore stability in these circumstances. 
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Any or all the agents in the formation can be adaptive key components, provided, that 
the relative error dynamics are almost strictly dissipative (ASD). The following result 
shows the ASD property for a formation.
Theorem: The relative error dynamics given by                                                 , is ASD if 

and only if the triple             is ASD.
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Result 5: Instabilities due to Weak Nonlinearities
Perturbations due to a planet’s oblateness, atmospheric drag, gravitational potential 
variations, etc., induces weak nonlinearities into the dynamics of agents. The equation 
below show the model for weakly nonlinear entities:    
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We introduce the concept of ideal trajectories to simplify the analysis of formation 
stability with nonlinear entities, and proved three theoretical results that show:  

• Weak nonlinearities reduce the stability margin of swarms, regardless of the network 
topology defined by the digraph Laplacian.

• The ASD property for the entire swarm is preserved with weak nonlinearities.
• Assuming the nonlinearities are “weak,” the adaptive key component can be used to 

restore stability.

Result 6: Illustrative Example

V-Formation with reciprocity 
showing unstable behavior.


