

ANALYSIS AND DESIGN OF ABORT OPTIONS FOR LOW ENERGY LANDING TRAJECTORIES

Principal Investigator: Mar Vaquero (392) Collaborator: Sonia Hernandez (392)

Program: Spontaneous Concepts

Project Objective

Develop a methodology to design abort trajectories for low energy landing trajectories involving direct approach (i.e., no orbit insertion) to airless bodies, like our Moon or Europa.

What IF...

...things don't go as expected and the spacecraft is unable land when and where it was supposed to?

A number of abort scenarios are considered in this investigation, ranging from onboard software malfunction to natural disasters:

- Hurricane, resulting in severe adverse weather that could cause a city-wide outage of 3-4 days.
- Software bug, or any issue detected onboard of any of the spacecraft systems could take 3-4 weeks to fix, test, and uplink.
- Earthquake or meteor strike, resulting in major property and life damage that could disable tracking and operations facilities for 3-4 months.

• Flooding of the JPL Spacecraft Operations Facility, causing an electrical system failure that would take up to a month to fix.

Earth-Moon System

Representative Distant Prograde Orbits (DPOs) and L₁ and L₂ Lyapunov Orbits at different energy levels in the Earth-Moon system. The selected DPOs for Jacobi Constant values C = 3.05and C = 3.12 are unstable and, therefore, possess stable and unstable manifold trajectories that asymptotically approach and depart the orbit. These natural transfers make excellent candidates for low ΔV cost abort options.

Staging at a DPO

By exploiting multi-body dynamics and searching for the appropriate periodic orbit structure, a viable abort trajectory alternative is identified. The ΔV cost increase of 59.45 m/s does not jeopardize the mission; in fact, it could be used from the fuel margin in the tanks allocated for contingencies.

the L₂ gateway of the Jupiter-Europa three-body system. Two ΔVs are planned nominally, the first one to reduce the energy of the spacecraft and the second one to place it on its landing trajectory.

	<u> </u>				
Landing State	Full Ephemeris				
Nominal Landing Epoch	June 13, 2032 20:44:31 UTC				
Altitude	9.1 km				
Latitude	30.0 N deg				
Longitude	170.0 E deg				
Inertial Velocity	1930 m/s				
Flight Path Angle	0.0 deg				
Flight Path Azimuth	260.5 deg				
DV_1	57.7 m/s				
DV ₂	0.5 m/s				

Landing at the same Local Solar Time (LST) is important for lighting conditions. *Three abort* scenarios are possible, exploiting multi-body staging orbits. The fastest landing option at the same location and LST is **2** weeks after nominal landing time, with a combination of L₁, L₂, and DPO staging orbits, with $\Delta V = 17$ m/s. To land at the same location and LST with no ΔV penalty, the spacecraft would need to wait for a minimum of 3.5 weeks after the nominal landing time.

	Land ASAP w/ $\Delta V \leq 50$ m/s				Land w/ $DV = 0 \text{ m/s}$			
Abort Type	ΔT_{land}	N_{rev}	Δt_{offset}	ΔV	ΔT_{land}	N_{rev}	Δt_{offset}	ΔV
	(weeks)	-	(hours)	(m/s)	(weeks)	-	(hours)	(m/s)
$N_{rev}L_1$	2.0	6	5.9	47.1	4.5	15	0.04	0.1
$N_{rev}DPO$	2.5	7	7.9	44.4	3.5	10	0.15	0.6
$N_{rev}L_2$	2.0	7	4.9	38.8	4.5	16	0.96	3.5
$L_2 DPOL_1 + N_{rev}L_2$	2.0	3	0.9	17.0	6.5	19	0.06	0.2

Option 1: maintain the orbit energy, wait in the selected staging orbit for 4 weeks (equivalent to 15 revs around L_1), resulting in a ΔV cost of 0 m/s.

Option 2: increase the energy of the L_1 Lyapunov orbit, wait for 2 weeks (equivalent to 6 revs around L_1), resulting in a ΔV cost of 47.1 m/s.

Benefits to NASA and JPL

- Directly applicable to low-energy trajectories currently supporting a variety of lander mission concepts, including Moon Diver and Europa Lander.
- Generalized method to find alternate landing trajectories is based on three staging structures available in any three-body dynamical system.
- Exploiting low energy transfers as abort mechanisms significantly reduces propellant costs if a backup landing opportunity is needed.

National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology

Pasadena, California

www.nasa.gov

