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Solutions of !-system of equations. (a) Analytic (circle) versus predicted depth profiles for
select wave numbers of "’s. A homogeneous incompressible Earth is considered. (b) Predicted
depth profiles for select wave numbers of "’s for the Preliminary Reference Earth Model [6].
Green’s functions associated with these solutions will be convolved with the time series of
potential field associated with the Chandler wobble. Results are adapted from [A].

Components of polar motion and degree-2 order-1 Spherical Harmonics. (a) #-component
of polar motion. From top to bottom of the panel, we show the observed data with a trendline,
low frequency, Chandler, annual, and high frequency signals. Notice, in the middle panel, the
variability in amplitude of Chandler wobble. (b) A simple spectral decomposition, highlighting
the unambiguous presence of Chandler and annual wobbles in both #- and "-components of
polar motion, with respective periodicities of 433 and 365 days. (c) Cosine (top) and sine
(bottom) components of degree-2 order-1 Spherical Harmonics: $%&((, *) and ,%&((, *). These
serve as “physical basis function” that can be used in concert with the time series of Chandler
wobble in order to derive the time series of associated potential field, - (, *, . , such that
- (, *, . = 0 . $%& (, * + 2 . ,%& (, * , where 0 . and 2 . are the amplitudes of #- and "-
components of the Chandler wobble (see, for example, middle panel in a).

Project Objectives

Chandler Wobble and Potential Forcing

Background: The Chandler wobble is a Eulerian free rotational mode of the Earth. This free
mode has a periodicity of 434 days and varies in amplitude, but is generally about 100-200
millisecond of arc (mas; 1 mas ~3.1 cm on the Earth’s surface). It is primarily excited by a
combination of atmospheric and oceanic mass and momentum transport processes [1]. As the
spin axis moves, it produces a centrifugal force that has the same radial and angular
dependence as the luni-solar tidal potential. The rotationally induced centrifugal potential may
be treated as a tide. In fact, both the body and ocean load components are formally termed
“pole tides”. The largest among the pole tides are at periods of 14 (free Chandler wobble) and
12 months (forced annual wobble). Pole tides deform the solid Earth and the equipotential
surface, causing the redistribution of ocean mass with a near-instantaneous equilibrium
response [2]. The 14-month signal is significant enough to manifest itself in ocean satellite
altimetry data [3]. The surface forcing of potential and associated ocean load induced by the
Chandler Wobble perturbs Earth’s interior stress field. To our knowledge, no rigorous
computational model of these stresses is available as yet.

Goal: To compute all six scalers of 3-D stress tensor in the interior of the solid Earth induced
by the Chandler wobble for the period 1994 to present.

One of many implications of this project is to quantify the pole tide modulation of the episodic
tremor and slow slip events along the Cascadia subduction zone [4]. It has been well
documented that stress accumulates episodically across the deeper (25-45 km) plate in
Cascadia and is relieved every 13-16 months, a periodicity strikingly similar to that of Chandler
wobble [5]. Accurate quantification of the Coulomb stress change induced by both the body
and ocean pole tide may shed light on the interior stress environment in the Cascadia
megathrust earthquake zone. The topic of this project is in direct concert with some of the
priority questions set forth in the 2016 NASA CORE report.

Significance
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Step 1: Solve the "-system equations, and generate Green’s functions for all six scalars of 3-D
stress tensor at a specified depth.

Step 2: Convolve these Green’s functions with the potential forcings to retrieve the stress field.

Theory and Methods 

• Perturbation equations of motion and 
gravitation for a viscoelastic Earth: 

• Variables are decomposed in a vector 
Spherical Harmonic space 

• Field equations reduce to a linear “"-
system” of equations, e.g.  

• Boundary conditions: "% 3 = −56 ; 
"7 3 = 0; 9 0, (, * = 0; and       
": 3 + 6;&

< "= 3 = %6;&
< >6 . 

• Given ? @ , A @ , µ @ , we solve the BVP 
for "C(@). See example results =>

• We convolve "C(@) with applied surface 
forcings, - (, * , e.g., 
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