

Developing an Alternative to the Problematic Trajectory B-Plane

Principal Investigator: Nicholas Bradley (392J) Co-Is: Eric Gustafson (392A), Sonia Hernandez (392C) Program: Innovative Spontaneous Concepts

Project Objectives:

Navigators and maneuver designers have used the "B-Plane" successfully for decades. But there continue to be issues with using it inconsistently or incorrectly.

- > Document the problems with using the B-Plane
- Research and develop possible alternatives
- > Evaluate alternatives in mission scenarios

FY19 Results:

1. Documented the benefits and detriments of using the B-Plane 2. Developed candidate coordinate frames (2 new, 1 adapted)

- 3. Assessed candidates against actual mission scenarios
- 4. Neared completion of a technical paper

The

B-Plane

Alternatives

Occulating Parifacal

Angular Momontum

Why is the B-Plane used?

- Convenient mapping from 3D to 2D
- Linear relationship with maneuver ΔVs
- Simplifying assumptions are often benign
- Long history of successful usage

What are the B-Plane's shortcomings?

- Assumes a two-body (Keplerian) trajectory
- Assumes a hyperbolic (not captured) trajectory
- Not intuitive to understand for a wider audience
- Multiple possible definitions for out-of-plane component
- Does not show velocity information
- Inconsistent usage is subtle and prevalent
 - Not including partial derivatives of \hat{S}
 - Not including partial derivatives for eventrelative mapping time
 - Using one B-Plane for multiple solutions
 - Varied choice of reference direction
 - Varied choice of mapping time

Maneuver Targeting Example for Europa Clipper Trajectory

		Frame	Frame	Plane
	Definition	 Trajectory always in XY- plane Periapsis always toward +X 	 Plane normal is instantaneous angular momentum Reference direction to define XY orientation is free 	 Perpendicular to trajectory at periapsis Reference direction to define XY orientation is free
	Benefits	 Can depict entire trajectory in 2D Always clear where periapsis is No radius scaling required Valid through capture 	 Can depict entire trajectory in 2D No radius scaling required Valid through capture Valid even in circular orbits 	 No radius scaling required Similar interpretation as B- Plane Can easily assess impact probability Doesn't assume a two- body trajectory
	What is it good for?	 ✓ Trajectory visualization 	✓ Trajectory visualization	 ✓ Maneuver targeting ✓ Covariance mapping and visualization
	What is it not so good for?	 X Maneuver targeting X Covariance mapping and visualization 	 X Maneuver targeting X Covariance mapping and visualization 	X Trajectory visualization

What are examples of when the **B**-Plane is insufficient?

- Non-Keplerian trajectory (e.g. close flyby)
- Low velocity, distant flybys
- Low thrust spiral-in approach
- Swarm / multi-spacecraft
- Irregular central body shape

Our recommendations

When using the B-Plane...

- ✓ Pick a sensible reference direction and clearly communicate it
- \checkmark Be consistent about including/excluding the partials of \widehat{S} and interpreting the results
- ✓ Be consistent about including/excluding event time partials and interpreting the results
- \checkmark Know when it's okay to depict multiple trajectories on a single B-Plane

When working with flyby / insertion / landing trajectories...

- \checkmark Test the convergence properties and results using other frames for maneuver design
- \checkmark Depict the trajectories in an alternate frame, especially when communicating with a

Benefits to NASA and JPL:

- A concise overview of the benefits and drawbacks of using the B-Plane
- Evaluation of several compelling alternatives
- Software to use the alternatives in JPL's institutional MONTE software for mission design and navigation
- Current and future missions can learn from the lessons we've collected, and can choose to adopt one of the alternatives for their purposes

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

PI Contact Information:

Poster No. RPC-179

