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PROJECT OBJECTIVE:

To provide a unified framework enabling rigid body

klnematlc and dynamic analysis and cqntrol of serial W 1 (00,), W 2(0n) Wi (03,), Wi 4(03,)

manipulators mounted on spacecraft via dual 4 .
quaternions (DQ) F 5 /,z' Wit s, ( ‘nl act,a(On)

*fa -
o Extend DQ theory to the N-Body spacecraft-
manipulator system problem with arbitrary tree
structure (i.e., an arbitrary number of links or
robotic arms on the spacecraft)
Develop control strategies for spacecraft- e
manipulator systems in DQ framework
Code and simulate N-Body spacecraft-

manipulator system performing rendezvous and / ~&
proximity operations

Geometry of a spacecraft-manipulator system with centers of mass, coordinate frames and wrench definitions

State Space Representation of System: Time Evolution of Dynamics:
q General form of system of equations for dynamics:
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Modeling and simulation of rigid multibody systems (B3 = -0, x (Mo, * ((w:/,))s) + WS (00,) + 4 1, W2 1 (01) 0y 1,

has been a topic of interest since the 70’s. Naturally, Time Evolution of Kinematics: — G W20}, o
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capture such coupling. In the past, this has been The generalized speed for each joint coordinate are | \gctor g, corresponds with r.h.s. of joint co;;ilr;ne{t‘ equnGg
mainly used for fixed-base kinematic tasks. In
contrast, this research aims to incorporate the natural
coupling for capturing the complex dynamics and

control of a robotic manipulator operating on a free- Tracking Control for End-Effector Pose
floating base satellite.
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« Dual velocity and acceleration of manipulator’'s end-
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LR Figure: Error states converge to zero in roughly 10 sec
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Figure: End-effector frame (red) converges to desired pose frame (blue)
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