
FY’19 Results: Supervised Novelty Detection

This figure shows the Selections based on Autoencoder 

Modeling of Multispectral Image Expectations (SAMMIE) 

system for novelty detection [4]. First, SAMMIE processes each 
6-channel (multispectral) Mastcam image through a 
convolutional autoencoder and attempts to reconstruct it.  The 
error map captures novel areas that could not be reconstructed.  
Next, a convolutional neural network is used to classify the error 
map content as “novel” or “typical”.  Finally, SAMMIE generates 
explanations that contrast the observed pixel spectra from what 
the model expected.  Pixels with large deviation are marked in 
red.

SAMMIE performs well at detecting novel areas, but it requires 
both positive (novel) and negative (typical) examples to train the 
classifier.  It can be difficult or impossible to provide examples in 
advance of all kinds of novelty that will be encountered, and a 
supervised method may be limited to detecting novelties seen 
during training.  Therefore, we also investigated purely 
unsupervised methods that do not require any labels.

FY’19 Results: Unsupervised Novelty Detection

Enhancing JPL’s Mission Science Planning & Data Discovery 
Capabilities with Machine Learning

Principal Investigator: Kiri L. Wagstaff (398)
James F. Bell III (ASU), Heni Ben Amor (ASU), Hannah Kerner (ASU), and Sue LaVoie (398)

Program: SURP

Poster No. RPC-130         

National Aeronautics and Space Administration

Jet Propulsion Laboratory

California Institute of Technology
Pasadena, California

www.nasa.gov

National Aeronautics and Space Administration

Copyright 2019. All rights reserved.

Publications:

[1] Hannah R. Kerner, Danika F. Wellington, Kiri L. Wagstaff, Samantha Jacob, James F. Bell III, and Heni
Ben Amor, “Novelty detection for multispectral planetary images," Fall Meeting of the American 
Geophysical Union, 2018.

[2] Hannah Kerner, Kiri Wagstaff, Brian Bue, and Heni Ben Amor, “Change detection on Mars: A deep 
learning approach,” NeurIPS Women in Machine Learning Workshop, 2018.

[3] Hannah Kerner, Danika Wellington, Kiri Wagstaff, Jim Bell, and Heni Ben Amor, “Novelty detection for 
multispectral images with application to planetary exploration,” IMA Workshop on Recent Advances in 
Machine Learning and Computational Methods for Geoscience, 2018.

[4] Hannah R. Kerner, Danika F. Wellington, Kiri L. Wagstaff, James F. Bell, and Heni Ben Amor, “Novelty 
detection for multispectral images with application to planetary exploration,” Innovative Applications of 
Artificial Intelligence, 2019.

[5] Hannah Kerner, Kiri Wagstaff, Brian Bue, Danika Wellington, Sammie Jacob, Jim Bell, and Heni Ben 
Amor, “Comparison of novelty detection methods for multispectral images from the Mastcam instrument 
onboard Mars Science Laboratory,” 4th Planetary Data Workshop, 2019.

[6] Hannah R. Kerner, Kiri L. Wagstaff, Brian D. Bue, Patrick C. Gray, James F. Bell III, and Heni Ben Amor, 
“Toward generalized change detection on planetary surfaces with convolutional autoencoders and 
transfer learning,” Journal of Selected Topics in Applied Earth Observations and Remote Sensing, in 
press, 2019.

[7] Hannah R. Kerner, Kiri L. Wagstaff, Brian D. Bue, Danika F. Wellington, Samantha Jacob, James F. Bell 
III, Chiman Kwan, and Heni Ben Amor, “Comparison of novelty detection methods for multispectral 
images in rover-based planetary exploration missions,” under review.

[8] Hannah R. Kerner, Kiri L. Wagstaff, Brian D. Bue, Patrick Gray, James F. Bell III, and Heni Ben Amor, 
“Toward generalized change detection on planetary surfaces with deep learning,” Fall Meeting of the 
American Geophysical Union, December 2019 (to appear).

PI/Task Mgr. Contact Information: 818-393-6393, kiri.wagstaff@jpl.nasa.gov

Project Objective:

The objective of this task was to collaborate with Arizona State 
University to develop software technologies that leverage 
machine learning to enhance JPL’s mission planning and data 
discovery capabilities.  Specifically, we focused on methods for 
novelty or anomaly detection in data returned by planetary 
missions.

Benefits to NASA and JPL 

(or significance of results):

• Enables application of cutting-edge data analysis methods to 
image data sets from rovers and orbiters for novelty and 
change detection

• Provides tools to help decrease mission planning time/effort 
and meet shorter timelines

• Direct application to MSL and Mars 2020 rover missions
• Future potential use by Mars Sample Return, Europa Lander
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Figure 2: SAMMIE system comprising a convolutional autoencoder with matrix-typed reconstruction error, a convolutional
neural network for classification, and products for explaining detections. Image credit: NASA/JPL/MSSS/ASU
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Figure 3: Example images selected by Mastcam multispec-
tral experts for the novel image dataset. From top left to
bottom right: an outcrop bearing surfaces with novel spec-
tral properties that may indicate the presence of the mineral
jarosite (Wellington et al. 2017b), a drill hole and tailings,
the iron meteorite called Lebanon (Johnson et al. 2014),
and a broken and wheel-scuffed surface. Image credit:
NASA/JPL/MSSS/ASU

Naive Bayes Previous work (Richter and Roy 2017; Jap-
kowicz, Myers, and Gluck 1995; Xiong and Zuo 2016) has
shown that a threshold on the autoencoder scalar reconstruc-
tion error (the mean squared error between the reconstructed
and input examples) is sufficient for discriminating between
typical and novel inputs for some novelty detection appli-
cations. We trained a Naive Bayes classifier (Figure 4) to
predict which distribution a given example was drawn from.
Maximum accuracy of 78.0% was achieved with the thresh-
old 0.415.

Feed-forward neural network As an alternative to the
Naive Bayes classifier, we trained a feed-forward neural net-
work classifier to predict whether an example was typical or
novel based on the scalar reconstruction error. The classifier
consisted of three dense layers of size 5�10�5. Maximum
accuracy of 78.0% was achieved with the threshold 0.627.

Inception V3 network Since the Inception network re-
quires 3-channel images as input, we created two separate

Figure 4: Histogram of autoencoder reconstruction error
(mean squared error) on typical and novel images. This
scalar value is not sufficient to distinguish inputs that are
typical versus novel.

input datasets for the shorter wavelength Mastcam filters
(447, 527, and 805 nm for the M-100; 445, 527, and 676
nm for the M-34) and the longer wavelength filters (908,
937, and 1013 nm for the M-100; 751, 867, 1012 nm for the
M-34). We refer to these networks in Table 1 as Inception-
V3 (short) and Inception-V3 (long). We fine-tuned the final
layer of Inception-V3 using TensorFlow (Abadi et al. 2015).
We found that this model achieved better performance when
examples were not weighted during training to correct for
the class imbalance as in the other classifiers. Maximum ac-
curacy of 84.8% was achieved with the threshold 0.217 for
Inception-V3 (short) and 79.5% with the threshold 0.594 for
Inception-V3 (long).

SAMMIE SAMMIE uses a convolutional neural network
to classify the CAE error map as described in the Dataset
section. The input to the CNN was the 64 ⇥ 64 ⇥ 6 error
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Fig. 9 Novel input example containing a partial meteorite with reconstructions and ex-
planatory visualizations (error maps) for each novelty detection method.

In Figure 7, we show the 6 images with the highest novelty scores using611

each method, and the lowest novelty scores in Figure 8. Figure 7 shows that612

all methods except RX(flat) correctly identified only novel examples in the613

top 6 ranks. Figure 8 shows that the PCA and GAN methods all correctly614

identified only typical examples in the bottom 6, while all other methods had615

false negatives in the bottom 6 images. The images ranked least novel by the616

PCA and GAN methods primarily contain features that occur frequently in the617

training dataset—the calibration target (black cylindrical object with sphere618

on top) and sand.619

6 Explanations620

For the proposed novelty detection methods to be useful in practice, they621

must also provide explanatory visualizations that allow scientists to trust and622

understand why an image was identified as novel and what features within the623

image are novel. Since the GAN, CAE, and PCA methods are reconstruction-624

based methods in which the novelty score of the overall image is some measure625

of the similarity between the input and reconstructed images, the spatial-626

spectral error map between the input and reconstruction can be used as a627

visualization of features in the input image that were poorly reconstructed by628

the model. We define the error map �(X, X̂) as a 64⇥64⇥6 tensor containing629

elements (xk
ij � x̂k

ij)
2 for i = 1, ..., N , j = 1, ...,M , and k = 1, ...,K where630

N = 64 is the number of rows, M = 64 is the number of columns, and K = 6631

is the number of channels in each multispectral image (Kerner et al., 2019). RX632

is not a reconstruction-based method, but does RX compute an anomaly score633

for each pixel in the image which can be visualized as single-channel image. In634

Figure 9, we show the reconstructions and explanatory visualizations for each635

model (error map for the GAN, CAE, and PCA methods; pixel-wise anomaly636

scores for RX) for an example from the novel test dataset that contains a637

nickel-iron meteorite. In all error maps except RX, we show the error in bands638

2, 0, and 1 (same bands as shown for the input and reconstructed image).639

Figure 9 shows that similar explanations are produced using all three CAE640

methods for the example shown, where most high-error pixels in the error641

map correspond to the novel meteorite in the input image (though di↵erent642

Data. We used 6-channel (multispectral) thumbnail images 
collected by the Mastcam imager on the Mars Science 
Laboratory rover.  Thumbnails are available to inform tactical 
planning before the full products are downlinked and calibrated.  
This data set includes 156 images that were manually annotated 
(see red bounding boxes in Fig. 1) to highlight novel areas of 
interest, for evaluation purposes (not training).  We further 
grouped these images into eight novelty categories (see Fig. 3).

Methods. We trained several novelty detection methods that 
require only a large collection of “typical” images (no novel 
examples are required).  These include a convolutional 
autoencoder (CAE), generative adversarial network (GAN), 
principal component analysis (PCA), and Reed-Xiaoli (RX).

Results. Shown above (Fig. 2) is the novel region highlighted by each method on an image of a 
meteorite, which we expect to be considered “novel”.  Autoencoder methods most clearly indicate the 
meteorite as the novel part of the image, whereas other methods are less obvious.Comparison of novelty detection methods for rover-based multispectral images 19

Fig. 5 ROC AUC scores for combined novel and typical test dataset overall and for each
novel sub-class.

and broken rock categories, the CAE-MSE, GAN, and PCA methods per-565

formed comparably well, while the CAE-SSIM, CAE-Hybrid, RX (flat), and566

RX (pixel) methods performed significantly worse (AUC scores near or worse567

than random). In the drill hole, DRT spot, and dump pile categories, all meth-568

ods except CAE-SSIM, CAE-Hybrid, and RX (pixel) performed poorly. In the569

meteorite category, RX (pixel) had the best performance followed by compa-570

rable performance by the CAE-MSE, PCA, and GAN methods; CAE-SSIM,571

CAE-Hybrid, and RX (flat) had the lowest performance in the meteorite cat-572

egory. Because the DRT spot, drill hole, and dump pile categories have the573

highest frequency in the novel test dataset than the other categories (Table 4),574

high performance scores in these categories for RX (pixel), CAE-SSIM, and575

CAE-Hybrid result in higher AUC scores when using the entire novel dataset,576

despite poor performance in several other categories. These results reveal three577

groups of novel image categories based on model performance: one that con-578

tains the drill hole, DRT spot, and dump pile categories; one that contains579

the float, bedrock, vein, and broken rock categories; and one that contains the580

meteorite category. We will explore explanations for the di↵erences in model581

performance for these three categories further in Section 7.582

Figure 4. RX and CAE trained with structural similarity 
(SSIM) loss were best for detecting dump piles, drill holes, 
and DRT spots as novel (morphological novelties) while the 
GAN, CAE with MSE loss, and PCA methods were best for 

detecting the remaining classes (spectral novelties). 

Figure 3. Eight categories of novel geology in the 
Mastcam multispectral image data set.

Figure 1. Manually annotated novel regions.


