

D-MATADOR: Distributed Multi-Agent Task Allocation and Determination for Robotic systems

Michael T. Wolf (347N), Federico Rossi (347N), Saptarshi Bandyopadhyay (347N) Kiril Solovey (Stanford), Robin A. Brown (Stanford), Marco Pavone (Stanford)

Overview

GOAL: develop models and distributed algorithms to solve the complementary problems of *task determination* and *predictive task allocation* in heterogeneous multi-robot teams

JPL Applications to Multi-Robot Systems

Identification and observation of science targets of opportunity

Dust devils on Mars

Plumes on Enceladus Weather phenomena on Earth

Tracking and monitoring of

- Wildfire monitoring
- Animal tracking
- Patrolling

Predictive Task Allocation

Allocation of agents to **time-varying** and uncertain tasks

- Agents are rewarded for task execution
- Agent's motions incur *penalties*

Given the posterior distribution on the evolution of tasks we may obtain its expected behavior

We design a **predictive task allocation** strategy that achieves optimal expected behavior

We formulate the problem as an Integer Linear Program

We than **relax** the problem into an LP The LP is solved in a distributed manner

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

www.nasa.gov

ACKNOWLEDGEMENTS

This project is funded by JPL's Strategic University Research Partnership (SURP) Program. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

