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? ?Allocation of agents to time-varying 
and uncertain tasks
- Agents are rewarded for task execution
- Agent's motions incur penalties

t=0 t=1 t=2

Given the posterior distribution on 
the evolution of tasks we may 
obtain its expected behavior
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We design a predictive task 
allocation strategy that achieves 
optimal expected behavior
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Captures:
• uncertainty on other agents’ location
• unreliable communication

s.t. C(i,j) satisfies communication 
constraints

Task Determination Function

Maximize
X

i2Agents

X

k2TDF (i)

MI(TDF I
k ;[{j:C(j,i)is True}yj)
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Task Determination
Determine tasks that should be performed 
exchanging only relevant information and 

observations
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Figure 1: Graphical depiction of the task determination and predictive task allocation problems—two key, complementary 
decision-making steps in multi-robot, event-driven missions. The set of tasks that robots should complete is determined during 
runtime based on the information collected by the robotic agents. Robots then allocate tasks to minimize the expected response 
time to both existing and future tasks. 
 

Table 1: A comparison of existing techniques for task allocation in robotic systems 
 Heterogeneous Distributed Predictive 

Auctions [3,4] ü ü û 
Spatial partitioning [5]  û ü ü 

Team-forming and temporal partitioning [6]  ü û ü 
Mixed-integer linear programs (MILPs) [7]  ü û û 

Markov-chain based algorithms [8]  û ü û 
This project  ü ü ü 
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GOAL: develop models and distributed algorithms to solve the complementary 
problems of task determination and predictive task allocation in heterogeneous 
multi-robot teams

Allocation of agents to time-varying and 
uncertain tasks

- Agents are rewarded for task execution
- Agent's motions incur penalties

Given the posterior distribution on the 
evolution of tasks we may obtain its 
expected behavior

We design a predictive task allocation 
strategy that achieves optimal 
expected behavior

We formulate the problem as 
an Integer Linear Program

We than relax the 
problem into an LP 

The LP is solved in a 
distributed manner

Given the expected behavior of tasks, we 
may formulate the problem as an ILP.

We than relax the problem into an LP. 

The LP is solved in a distributed manner.
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Overview

Given the expected behavior of tasks, we 
may formulate the problem as an ILP.

We than relax the problem into an LP. 

The LP is solved in a distributed manner.

Given the expected behavior of tasks, we 
may formulate the problem as an ILP.

We than relax the problem into an LP. 

The LP is solved in a distributed manner.

Identification and observation of  science 
targets of opportunity
• Dust devils on Mars
• Plumes on Enceladus
• Weather phenomena on Earth

Tracking and monitoring of 
• Wildfire monitoring
• Animal tracking
• Patrolling

Approach 1: information-theoretical

Approach 2: clustering for distributed optimization

Preliminary Results

Preliminary Results

Agents must 
compute their 
Voronoi neighbors.
Other agents’ 
locations are 
represented in a 
particle filter.
Left: mutual 
information
Right: optimal data 
exchange
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