

Thermochemical structure of a hybrid rocket reaction layer based on laser absorption tomography

Principal Investigator: Ashley Karp (353L); CO-I's: Prof. R. Mitchell Spearrin (UCLA), Elizabeth Jens (353L) Student Participants: Fabio A. Bendana (UCLA), Josue J. Castillo (UCLA), China G. Hagström (UCLA) Program: SURP

Project Objectives

- Evaluate hybrid rocket combustion efficiency through quantitative, spatiallyresolved thermochemistry measurements via laser absorption tomography
- Investigate the thermochemical structure of a hybrid rocket reaction layer to provide insights into hybrid combustion physics and overall motor design
- Develop quantitative metrics to describe the reaction layer progression and characterize loss mechanisms that result in suboptimal performance

Hybrid Rocket Combustion

Laser Absorption Tomography

- Spectral absorbance of a molecule is related to thermophysical flow properties through the Beer-Lambert law
- Projected absorbance areas are obtained for single-plane measurements through a scanned-wavelength direction absorption technique
- Flow field symmetry enables Abel inversion, which relates projected absorbance areas to the thermochemical field distribution

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Benefits to NASA-JPL

- Developed a granular method to evaluate and improve hybrid rocket performance through spatiallyresolved temperature/species measurements
- Thermochemistry provides a basis for characterizing performance impacts of different motor designs under consideration for interplanetary SmallSats and a Mars Ascent Vehicle
- Resulting thermochemical data are useful for anchoring reacting thermo-fluids models of heterogeneous combustion

Poster No. RPC-214

Publication: Bendana, F. A., Castillo, J. J., Hagström, C. G., & Spearrin, R. M. (2019). Thermochemical structure of a hybrid rocket reaction layer based on laser absorption tomography. In *AIAA Propulsion and Energy 2019 Forum*.

PI Contact Information: Ashley Karp – ashley.c.karp@jpl.nasa.gov

