

Time Out – Recovering Time & State for Autonomous Navigation Systems in **Deep Space**

Principal Investigator: Joseph Riedel - Mission Design & Navigation Section (392) External: Andrew Dahir, Scott Palo, Daniel Kubitschek - University of Colorado Boulder Program: SURP

Project Objective:

- The Lost-in-Space Problem (No time, position or velocity knowledge)
- Remedy a deficiency of capability by providing a "cold start" independent determination of time and state (position and velocity) of a deep space spacecraft.

FY18/19 Results:

- Development of Algorithms to solve for Time given an offset in known time.
- Successful modification of the Optical Navigation Program software
- Time offset variable is a function of the velocity of the spacecraft and the celestial bodies used for the navigation solution.
- Implemented scripting and program that can run unlimited simulations while implementing a time offset into the scenario.
- A comprehensive covariance study on different simulation parameters
 - Time offset, pixel error, simulation time frame, number of images, planet distance, and planet location
- Add robustness and enhanced fault-to-recovery capability to deep space spacecraft.
- Solve for CubeSat hardware
- Solution for CubeSats immediately apply to larger systems
- Proven time solution that can recover from a time offset.
- Unknown Time, Position, and Velocity study

Benefits to NASA and JPL:

- Wished for feature has been added to ONP software, namely to solve for time biases.
- This problem, for example, had been suspected on the Dawn mission, but no means existed to analyze it.
- With this already implemented on the mission, the robustness for detecting timing errors and recovering faulted systems is significantly increased.
- This new feature will be added to any mission that planes to do deep space navigation as another fail safe in the JPL arsenal to recover from faulted states.

Results

The main significance of these results and research is the fact that it has been proven that time can be solved for with a best known state (position and velocity) of 12 and 24 hours prior. This was able to be solved within a 1-

- sigma of 30 minutes of the actual time with the average being 10 minutes for a ¹/₄ pixel error case.
- The formal 1-sigma uncertainty with a limited estimation set shows time recovery of 1700 seconds at a distance of 1 AU from Jupiter depending on the simulation pictures run through the filter.
- Multiple scenarios were run using picture sets of Jupiter, Saturn and Mars
- 1-7 days simulation
- 9 and 180 pictures per simulation
- Error was added to the filter in the form of random white noise and a $\frac{1}{2}$ and ¹/₄ random pixel error on objects in the field of view.
- All simulations were run with the Sinclair Cubesat star tracker
- Simulation showed a slight bias towards the direction of the time offsets, as shown in the Histograms

Publications:

Pending: Journal of Small Spacecraft Pending: Acta Astronautica

Conference Publications/Presentations:

41st Annual AAS Guidance, Navigation and Control Conference-2018

PI/Task Mgr. Contact Information: Joseph Riedel joseph.e.riedel@jpl.nasa.gov (818) 354-8724

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Copyright 2019. All rights reserved.

42nd Annual AAS Guidance, Navigation and Control Conference-2019

2019 SmallSat Conference

Conference Presentations:

2019 Interplanetary Probe Workshop

Poster No. RPC-122