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Tutorial Introduction

Abstract 1000.0

Optical autonomous navigation (AutoNAV) involves using on-board

imager(s) to observe known celestial beacons (e.g., asteroids, planetary

satellites, and other spacecraft), which can then be used to estimate the 1200:0

state of the observer and possibly additional parameters. Unlike =

traditional ground-based approaches, optical AutoNAV is essentially =2

independent of ground-based resources (e.g., Deep Space Network). & 1400.0

This can help to reduce mission costs, alleviate the strain on deep-

space communication systems, and enable more dynamic mission

profiles that are not limited by communication delays with the Earth. 1600.0 g gagi:;;”c“oiz Egom_ - —
Through this research initiative, we focused on building analysis tools — Ogtical: cond xB.81: TCM 1B DCO

that were then used to quantify optical AutoNAV performance and ] Optical, est targs: TCM 1B DCO

develop requirements for various deep-space exploration environments 1800.0 Optical, no cons: TCM 1B DCO

(e.g., interplanetary cruise, Gas Giant systems, cis-lunar, etc.). Our W Triton impact radius

specific emphasis for FY20 was on the Ice Giant systems, which are a 000 000 (000 000
particular focus area of the upcoming NASA decadal survey. Our results - -~ BT(km;\’ ]
demonstrated that exploration of these systems via optical AutoNAV is :

feasible with the right combination of camera parameters and planetary (" Delivery uncertainties (1-sigma) for a Tr ‘
satellite ephemeris knowledge. In fact, the navigation performance is flyby during a Neptune tour scenario USI )
comparable to typical ground-based radiometric approaches. \_ground-based (Radio) and Optical AutoNAV..
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Problem Description

«  Optical Autonomous Navigation (AutoNAV): [ S (B EETE }

. Description: Navigate relative to known beacons (e.g., Beacon Geometry
asteroids, planetary satellites, and other spacecraft) by imaging

them with an on-board camera

. Research Goals: Determine optical AutoNAYV feasibility in a
variety of deep space environments and define requirements
for a feasible mission profile (e.g., camera parameters, beacon
ephemeris uncertainty, etc.)

. Benefits relative to standard ground-based radiometric

navigation:
. Reduced mission costs
. Mitigates strain of deep space communication networks (e.g.,
DSN) | bsp unication networks (e-g | Camera Models |
. Enables more dynamic mission profiles Focal Length IFOV
Camera (de ) (urad)
. Research focused on Ice Giant exploration in FY20 e =
. Focus area for the upcoming NASA Decadal Survey Hi-Res 2.1011 10.0 3. 5\\
. New research suggests unique magnetic field properties near Mid-Res 0.50 7.0 60.0 [ Q_5‘,|;‘j “\v’u
Uranus N
Z

Low-Res 0.0502 26.9 128.0 .5
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Problem Description

. Optical Autonomous Navigation (AutoNAV):

. Description: Navigate relative to known beacons (e.g.,
asteroids, planetary satellites, and other spacecraft) by imaging
them with an on-board camera [

Improved Observer-

. Research Goals: Determine optical AutoNAYV feasibility in a Beacon Geometry

variety of deep space environments and define requirements
for a feasible mission profile (e.g., camera parameters, beacon
ephemeris uncertainty, etc.)

. Benefits relative to standard ground-based radiometric

navigation:
. Reduced mission costs
. Mitigates strain of deep space communication networks (e.g.,
DSN) | bsp unication networks (e-g | Camera Models |
. Enables more dynamic mission profiles Focal Length IFOV
Camera (de ) (urad)
. Research focused on Ice Giant exploration in FY20 e =
. Focus area for the upcoming NASA Decadal Survey Hi-Res 2.1011 10.0 3. 5\\
. New research suggests unique magnetic field properties near Mid-Res 0.50 7.0 60.0 E Q_5(l/\ “\v’l
Uranus \ 7).
Z

Low-Res 0.0502 26.9 128.0 .5
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Methodology

*  Optical AutoNAV Evaluation Process:

Determine which beacons are visible
Down-select to the imaged beacons

Extract measurements (e.g., centroid) from the
images

Process the measurements and quantify navigation
performance

Determine scenario feasibility

*  For both Uranus and Neptune, we simulate:

Kinematic Positioning: How well can | determine my
position at a given time and location?

Approach Scenario: Given measurements over time,
can | successfully enter into orbit about the
primary?

Tour Scenario: Given measurements over time, can |
successfully observe/flyby the system’s satellites?
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Results

Significant Conclusions:

Intense seasonal lighting variations make Uranus mission timing
important

Neptune approach is the most difficult case, but cameras that
could support it already exist

Optical AutoNAV can feasibly enable exploration of the Ice Giant
systems given an appropriate camera and achievable
improvements in the ephemeris knowledge of the systems’
satellites

Using the Hi-Res camera model, optical AutoNAV performance is
comparable to (or at times better than) ground-based methods

These results, in combination with accomplishments
from previous years:

Demonstrate a successful completion of this research initiatives
goals with many potential scenarios thoroughly analyzed (e.g.,
interplanetary cruise, Gas Giants, cis-lunar, and Ice Giants)

Supports a renewed push for AutoNAV usage in flight

. Several missions have/will employ aspects of AutoNAV for
limited portions of their missions (e.g., Deep Space 1,
Stardust, OSIRIS-REX, and DART)

| Uranus Kinematic Results in 2020 and

2050
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[ Triton Flyby Delivery Uncertainties ]
in Neptune Tour

Results

. Significant Conclusions:

. Intense seasonal lighting variations make Uranus mission timing
important 1000.0 - ‘
. Neptune approach is the most difficult case, but cameras that

could support it already exist

. Optical AutoNAV can feasibly enable exploration of the Ice Giant 1200.0 \\\
systems given an appropriate camera and achievable e
improvements in the ephemeris knowledge of the systems’

satellites € '
X
. Using the Hi-Res camera model, optical AutoNAV performance is o« @
comparable to (or at times better than) ground-based methods o 1400.01
. These results, in combination with accomplishments
from previous years: ‘
) . o 1600.0 4 C—— Radio: TCM 1B DCO
. Demonstrate a successful completion of this research initiatives 1 Optical, cons x0.10: TCM 1B DCO
goals with many pf)tentlal scenarios thoroughly analyzed (e.g., [ optical, cons x0.01: TCM 1B DCO
interplanetary cruise, Gas Giants, cis-lunar, and Ice Giants) ]
o [ Optical, est targs: TCM 1B DCO
. Supports a renewed push for AutoNAV usage in flight 1800.0 - Optical, no cons: TCM 1B DCO
. Several missions have/will employ aspects of AutoNAV for EEm Triton impact radius
limited portions of their missions (e.g., Deep Space 1, ] ] ]
Stardust, OSIRIS-REX, and DART) /XAOO 0 /X’),OO 0 ,XOOO 0 /év\
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