

Virtual Research Presentation Conference

Light-Driven Electrochemical Production of Oxygen and Fuel from CO₂ and Sunlight for Mars ISRU

Principal Investigator: John-Paul Jones (346) Co-Is: Keith Billings (346), Jillian Clinton (Caltech), Harry Gray (Caltech), Emmanuelle Despagnet-Ayoub (346) Program: Strategic Initiative Assigned Presentation # RPC-151

Jet Propulsion Laboratory California Institute of Technology

Oxygen generation on Mars is a critical technology

- Future human Mars missions
 - Preliminary estimates of 30,000 kg of O₂ for Martian ascent vehicle¹
- Human presence
 - Each human exhales ~1 kg CO₂/day²
- Electrochemical reduction reactions:
 - Cathode: $CO_2 + 2H^+ + 2e^- \rightarrow CO + H_2O$
 - Anode: $H_2O \rightarrow 2H^+ + 2e^- + O_2$

The goal of this project is to develop a low temperature O₂ generation process powered by sunlight

- 1. NASA's Human Exploration Design Reference Architecture 5.0 Addendum
- 2. D. E. Sherif and J. C. Knox, "International Space Station Carbon Dioxide Removal Assembly (ISS CDRA) Concepts and Advancements" *SAE Tech. Pap.* 2005-01-2892 (2005).

Problem Description

- CO₂ reduction is very challenging due to high energy barrier
- SOA: Solid Oxide Electrolysis Cell (SOEC) at 800 °C
- Oxide membrane enables conversion of CO₂ to CO and O₂ without protons
 - Cathode: $2 \text{ CO}_2 + 4 \text{ e}^- \rightarrow 2 \text{ CO} + 2 \text{ O}^{2-}$
 - Anode: $2 O^2 \rightarrow O_2 + 4 e^-$
- High temperature allows endothermic reaction
 - Some energy for conversion is provided by heat, rather than electrochemically
- Future Mars sample return missions and long term exploration will require access to O₂ for propellant and life support systems
- The Martian atmosphere provides an almost limitless supply of CO_2, which can be electrochemically converted into ${\rm O}_2$

- 1. Develop efficient catalyst for CO₂ reduction
- 2. Integrate catalyst into flow electrolysis cell
- 3. Design an O₂ production system
- 4. Build a breadboard
- 5. Test electrochemical performance of system
- 6. Measure water loss, flow rate, pressure, temperature, system stability and other performance parameters for full system comparison to MOXIE

Research Presentation Conference 2020

- a) Molecular CO₂ catalyst developed
- b) Catalyst integrated into flow cell
- c) End-to-end electrochemical CO₂ reduction system designed
- d) Breadboard system built
- e) Electrochemical performance evaluated
- f) Many system-level performance metrics measured
 - a) Flow rate effects measured
 - b) Humidification effects measured
 - c) Long term catalyst stability partially measured
 - d) Temperature and pressure not investigated
 - e) Water capture system not implemented

Publications and References

References:

- 1. NASA's Human Exploration Design Reference Architecture 5.0 Addendum
- 2. D. E. Sherif and J. C. Knox, "International Space Station Carbon Dioxide Removal Assembly (ISS CDRA) Concepts and Advancements" SAE Tech. Pap. 2005-01-2892 (2005).

Publications:

- 1. Almagul Zhanaidarova, Curtis E. Moore, Milan Gembicky and Clifford P. Kubiak, *Chemical Communications*, 2018, **54**, 4116-4119.
- 2. Almagul Zhanaidarova, Andrew L. Ostericher, Christopher J. Miller, Simon C. Jones and Clifford P. Kubiak, *Organometallics*, 2019, **38**, 1204-1207.