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Motivation and Relevance
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Combine in-situ sensors on a wheel and machine learning 
(ML) to: 

• Add a sense of touch to the visual odometry.

• Deploy onboard in near-real time to generate 
important engineering and science products.

• Provide feedback to autonomous systems in evolving 
environments:
• Work in no-light conditions.
• Anomaly detection, monitoring for states which 

haven’t been observed before. 
• Data prioritized for transmission to operators.



Methodology
• Use hardware to collect data from in-situ sensors for 

various configurations of terrain, materials, slip, 
hydration.

• Pre-process the collected data to extract meaningful 
representations, e.g. images.

• Build and train machine learning models using 
metrics/features computed based on the 
representations:

• Slip regression
• Rock binary classifier
• Hydration multi-class classifier Various data collection experiments: rocks, 

pebbles, sharp landforms, dunes.



Methodology
1) Tactile wheel carries two main in-situ sensors:

• 2D Xiroku pressure sensor (PS)
• Electrochemical Impedance Spectroscopy (EIS) 

sensor

Pressure grid
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2) CROSSBOW test cart allows mobility 
and data taking:

• Motor, force/torque, string 
potentiometer

Tactile wheel is mounted on the CROSSBOW 
cart to be used in experiments

EIS sensor

Main Barefoot Rover hardware components:



Methodology
The main two types of extractions:

• Contact area time series (bottom):
• The number of pixels touching the ground in the 

area 
• Pressure grid images (right):

• Represent the spatial and time dimension of the 
wheel
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Methodology
Features are extracted to be the input into the ML 
models:

• Sliding window for streaming implementation.

• Contact area times series:
• Signal processing, e.g. wavelets, rolling statistics 
• Time series metrics 

• Pressure grid images:
• Statistics in the spatial dimension of the wheel 
• Geometric features from derived image objects

• Grouser and non-grouser pixels carry additional 
information. Contact area time series for low slip/flat, high slip, rock (top to bottom) 

contact area with wavelet and mean filter smoothing. Each type of 
experiment has a unique signature.

Time



Results
Slip regression model:

• Test root mean squares error (RMSE) -- 8.5%
• Bias for higher slip values 
• Better than current post-hoc estimates with 10% 

error

Rock binary classification model:

• Overall test accuracy -- 99%
• Rock accuracy -- 85%
• Buried rock accuracy -- 7% but obtained rock likelihoods 

are larger than for the flat experiments 

Higher likelihoods of 
buried rock

Two main ML models trained with Gradient Boosted Trees are:



Results

Hydration levels are clearly separated:

dry

most hydration

Hydration classification is performed based on EIS sensor, 
which produces amplitude and phase of a signal:

• Data was collected in lab conditions, with static wheel 
experiments

• Discrete hydration levels set: 0, 1, 3, 5, 10, 15%
• Hydration accuracy -- 87-99%

In-motion EIS experiment with 10% hydration shows 
distinct moisture signature, however, data appears 

to be very noisy in general and requires good 
contact with the ground. 

dry 

actual hydrated data



Results
• A low resolution 2D pressure sensor allows extraction of 

valuable information regarding the terrain.

• Simple and fast time series methods can capture the 
features of the terrain and the state of the wheel.

• Hydration levels can be detected, including while wheel 
is in motion with the EIS sensor.

• Developed a prototype of streaming terrain change 
detection that can enhance autonomous driving.

• Implemented ML algorithms in HPSC and EMU flight 
software architectures.

• Future work would implement and rigorously test the 
methods on a real rover wheel in true-to-life conditions.
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