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Current planetary rovers typically use “Ground-in-the-loop” (human 
operators) to make all but the simplest decisions.

Environments like Mars are relatively well understood, meaning systems 
can be designed for the expected conditions.
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RoboSimian Platform SURROGATE Platform



Use case: Robotic Mobility

Cost metric: 

Driving

Inchworming

Walking

Sculling



Use case: Robotic Mobility

• Driving is very efficient, but gets stuck on steep gradients 
making the energy efficiency go to zero

• Inchworming uses more energy on flat ground, but 
doesn’t get stuck on a sandy slope



Approach: Derived from Reinforcement Learning sub-field named 
Multi-Armed Bandit theory
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UPRITE algorithms expand on this for 
exploration of dynamic environments.

Written into library named RSTAR
(Reinforced STochastic AutoRegression)



Methodology

Distinctions:
- We can determine a priori which 
options we expect to work best

- Our environment might change 
after we test the options

Traditional MAB policies typically test, or 
explore, each of the options for some 
period then use, or exploit, the best one 
they find

e.g. 𝜖greedy , Upper Confidence Bound (UCB)
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Use case: Robotic Mobility

UPRITE “decision engine” automatically switches 
between modes when they become less effective

UPRITE formulation:

Preferential Iterative 
Update (PIU) policy

Uses exponential tracking 
function instead of average:

Slowly “forgets” past 
measurements



Use Case: Excavation 

Sweeping Raking Chomping



Use Case: Excavation 

Algorithm realizes normally better sweeping and raking modes 
aren’t working, switches to more energy intensive chomping 

RSTAR Mode Selection



Applications

Any poorly understood environment where human intelligence 
isn’t available to determine the best way to execute a task

Icy Moon Surface Sampling Difficult to reach Earth Environments
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