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Abstract

The Europa Clipper spacecraft will explore Jupiter's moon Europa to learn about its geology and
potential habitability using a suite of scientific instruments. Answers to the many outstanding questions
about Europa can be found by discovering certain unexpected or unpredictable phenomena such as
thermal anomalies, compositional anomalies, or changes in its magnetic environment.

The baseline strategy for discovering such phenomena is through systematic observation and
serendipity. However, the limited bandwidth and high latency in communication with the spacecraft
make this strategy resource-intensive, and it precludes new observations being made quickly in
response to discoveries not yet recognized by scientists on the ground. By developing tools to perform
detection and discovery onboard the spacecraft, it is possible to increase the quality and quantity of
science data collected by the mission through data summarization, downlink prioritization, and adaptive
instrument mode switching.

In this work, we evaluate the technical and practical feasibility of implementing a set of algorithms
for use onboard Europa Clipper, which will require the use of a radiation-hardened processor with
limited computational capability. Our proposed framework is successfully used to evaluate several
machine learning algorithms and informs directions for future development and deployment to
Europa Clipper.

Introduction



Increased spacecraft autonomy and automated ground-
based processing can enable greater mission science 
productivity for Europa Clipper, set to launch in 2024.

Relevant state of the art in spacecraft science autonomy 
includes:
- Dust Devil Detection (WATCH) on Mars Exploration 

Rovers (MER) [1]
- AEGIS Autonomous Targeting on MER and the Mars 

Science Laboratory (MSL) [2]
- Thermal and Spectral Anomaly Detection on the EO-1 

Autonomous Sciencecraft Experiment [3, 4]

Problem Description
Dust Devil Detection

AEGIS Autonomous Targeting

Sulfur Detection on EO-1



Onboard data analysis algorithms previously developed and tested:

• Europa Thermal Emission Imaging System (E-THEMIS):
• 3-Band Infrared Imager
• Thermal Anomaly Detection [A]

• Plasma Instrument for Magnetic Sounding (PIMS):
• Measures the counts of charged particles within energy bins
• Ionosphere-Magnetosphere Boundary Detection [B]

• Mapping Imaging Spectrometer for Europa (MISE):
• 421-band Imaging Spectrometer
• Spectral Anomaly Detection [C]
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Algorithms ported from Python to C and evaluated using:

1. Benchmarking (Computational and Memory Requirements)
• Uses VxWorks running on a PowerPC 750 processor, an 

analogue to the RAD750 used by Europa Clipper
• Record runtime and memory

2. Radiation Robustness Analysis
• Uses BITFLIPS [5] running in the Linux Environment
• Injects single-event upsets (SEUs), flipped bits in memory 

during program execution
• Expected SEU rate at Jupiter: 10-19 SEU/KB-instruction

Methodology
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Left: E-THEMIS runtime (PPC750) as a function of number of pixels in the observation (x-axis) and maximum number of 
anomalies to record (k).

Center: Results showing the average fraction of top k = 10 thermal anomalies in E- THEMIS observations that are still 
recoverable as SEUs are introduced at various rates. 

Right: The fraction of false positives within the top k = 10 identified anomalies in E-THEMIS observations for each band as 
a function of SEU rate.

Algorithm can process E-THEMIS data with minimal computational and memory requirements, and is robust to radiation at 
many orders of magnitude above the expected rate (10-19 SEU/KB-instruction).

Results: E-THEMIS Thermal Anomaly Detection
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Left: PIMS L2-Diff algorithm runtime (PPC750) as a function of the filter window size, across various filters. A comparison 
using 16- and 32-bit representations of the data is also shown. 

Right: Results showing how average precision is affected by SEU rate for them PIMS L2-Diff detection algorithm with a 
median filter. The left shows the effect for data in a 32-bit representation, and the right shows the same for data in a 16-bit 
representation. Dashed lines show variations across random seeds.

The L2-Diff algorithm can process data fast enough to accommodate the rate of data generation (2 Hz), and is robust to 
SEU rates exceeding those expected (10-19 SEU/KB-instruction).

Results: PIMS Environmental Transition Detection



Left: MISE RX algorithm runtime (PPC750) as a function of the number of spectral channels. Runtime is extrapolated to 
full-sized observations with 421 channels. 

Right: The fraction of the top k = 10 identified anomalies in MISE observations affected by radiation as a function of SEU 
rate.

The existing RX implementation requires improvements to reduce memory footprint and increase algorithm efficiency. It is 
currently sensitive to radiation at SEU rates expected at Europa (10-19 SEU/KB-instruction).

Results: MISE Spectral Anomaly Detection
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• E-THEMIS and PIMS algorithms can be feasibly implemented onboard.

• The RX algorithm for MISE spectral anomaly detection requires future 
improvements to run efficiently and robustly onboard.

• Our evaluation methodology can be applied to other algorithms and missions.

• In the future, we will seek pathways for infusion into mission flight software as 
well as ground systems for automated analysis to assist scientists.

Conclusions and Future Work
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