RPC 2020 Virtual Research Presentation Conference

The Planetary Boundary layer: a Decadal Survey Incubation Challenge

Principal Investigator: J. Teixeira (329) Co-Is: M. Kurowski (329), J. Neu (329), J. Liu (329), T. Lee (329), V. Payne (329), C. Ao (335), M. Lebsock (329), D. Diner (329), S. Brown (386) Program: Strategic Initiative

Assigned Presentation #036

10µm

Introduction

The Planetary Boundary Layer (PBL) was selected as an Incubation Targeted Observable by the 2017 Earth Science Decadal Survey:

TARGETED OBSERVABL	SCIENCE/APPLICATIONS SUMMARY	CANDIDATE MEASUREMENT APPROACH	Designated	Explorer	Incubation
Atmospheric Winds	3D winds in troposphere/PBL for transport of pollutants/carbon/aerosol and water vapor, wind energy, cloud dynamics and convection, and large- scale circulation	Active sensing (lidar, radar, scatterometer); passive imagery or radiometry-based atmos. motion vectors (AMVs) tracking; or lidar**		×	×
Planetary Boundary Layer	Diurnal 3D PBL thermodynamic properties and 2D PBL structure to understand the impact of PBL processes in weather and AQ through high vertical and temporal profiling of PBL temperature, moisture and heights.	Microwave, hyperspectral IR sounder(s) (e.g., in geo or small sat constellation), GPS radio occultation for diurnal PBL temperature and humidity and heights; water vapor profiling DIAL lidar; and lidar** for PBL height			x
Surface Topography & Vegetation	High-resolution global topography including bare surface land topography ice topography, vegetation structure, and shallow water bathymetry	Radar; or lidar**			×

Incubation:

Measurement/ mission approach not mature enough - requiring investment and work during

next few years

PBL was considered High Priority across DS panels (Weather and AQ, Climate, Water Resources, Ecosystems) and Integrating Themes

Problem Description

- There are a variety of potential PBL Measurement Approaches: GNSS RO, Hyperspectral IR and MW sounding, SW, Lidar/DIAL, Radar/DAR
- \rightarrow these are complementary approaches that should be combined
- Essential question: Which approaches and architectures will optimally address PBL science requirements?
- Goal of this project: To develop and implement a simulation methodology to evaluate different PBL measurement approaches and architectures
- This project helps position JPL as a leader of the PBL Incubation efforts

Methodology

- 1) High-resolution Large Eddy Simulation (LES) models are used to create a variety of PBL virtual cases
- 2) Based on these virtual fields radiative/instrument forward models are used to create virtual L1 fields
- 3) Retrievals are performed on L1 and produce geophysical variables that are compared to LES fields

Results – Example I

Differential absorption radar (DAR)

Shallow precipitating cumulus (RICO case)

What kind of profiles are measurable with DAR?

Mean profile of inside-cloud humidity with 200 m vertical resolution representative of the mean on a horizontal scale of 100 km with 2-3 gm⁻³ uncertainty

Results – Example II Infrared (IR) Sounding

Stratocumulus (DYCOMS case)

Left) Simulated water vapor profile for a well-mixed PBL over the subtropical ocean from a Large-Eddy Simulation (LES) model. Right) Cumulative degrees of freedom with different levels of noise.

Results – Example III

Joint GNSS-RO and MW Retrievals Shallow convection (RICO case)

Preliminary results show that the combined RO and MW yield improved temperature and water vapor solutions than either observation alone

Publications and References

- Cooper, K. B., R. Roy, R. Dengler, R. Rodriguez Monje, M. Alonso-delPino, J. V. Siles, O. Yurduseven, C. Parashare, L. Millan, and M. Lebsock, 2020b: G-Band Radar for Humidity and Cloud Remote Sensing. *IEEE Transactions on Geoscience and Remote Sensing*, doi:10.1109/TGRS.2020.2995325.
- Kubar, T. L., Xie, F., Ao, C. O., and Adhikari, L., 2020: An assessment of PBL heights and low cloud profiles in CAM5 and CAM5-CLUBB over the Southeast Pacific using satellite observations. *Geophysical Research Letters*, 47, e2019GL084498.
- Kurowski, M.J., W.W. Grabowski, K. Suselj and J. Teixeira, 2020: The strong impact of weak horizontal convergence on continental shallow convection. *J. Atmos. Sci.*, **77**, 3119–3137.
- MacDonald, M., M. Kurowski and J. Teixeira, 2020: Direct Numerical Simulation of the Moist Stably Stratified Surface Layer: Turbulence and Fog Formation. *Boundary Layer Meteorology*. **173**, 343-368.
- Matheou, G., A. Davis, and J. Teixeira, 2020: The Spiderweb Structure of Stratocumulus Clouds. *Atmosphere*, **11**, 730. <u>https://doi.org/10.3390/atmos11070730</u>.
- Matheou, G., and J. Teixeira, 2019: Sensitivity to physical and numerical aspects of large-eddy simulation of stratocumulus. *Mon. Wea. Rev.*, **147**, 2621-2639.
- Roy, R. J., M. Lebsock, L. Millán, and K. B. Cooper, 2020: Validation of a G-Band Differential Absorption Cloud Radar for Humidity Remote Sensing. *J. Atmos. Oceanic Technol.*, 37, 1085–1102, <u>doi:10.1175/JTECH-D-19-0122.1</u>.
- Thompson, D. R., Kahn, B. H., Brodrick, P. G., Lebsock, M. D., Richardson, M., and Green, R. O., 2020: Spectroscopic Imaging of Sub-Kilometer Spatial Structure in Lower Tropospheric Water Vapor. *Atmos. Meas. Tech. Discuss.*, <u>https://doi.org/10.5194/amt-2020-346</u>.
- Wang, K.-N.; Ao, C.O.; de la Torre Juárez, M., 2020: GNSS-RO Refractivity Bias Correction Under Ducting Layer Using Surface-Reflection Signal. *Remote Sens.* 12, 359.