

Virtual Research Presentation Conference

Demonstration of Advanced Ranging Techniques

Principal Investigator: Meegyeong Paik (332) Co-Is: James Border (335), Clement Lee (332), Dong Shin (335) Program: (Strategic Initiative R&TD)

Assigned Presentation #RPC-282

Jet Propulsion Laboratory California Institute of Technology

Research Presentation Conference 2020

Introduction

- The accuracy of the current ranging system is 1 m for Sun-Earth-Probe (SEP) angle > 30° due to:
 - Solar plasma noises
 - Station delay
 - System noises
- The accuracy of newly developed Advanced Ranging Instrument (ARI) at DSS-25 is expected to be 10 cm unconditionally due to:
 - Dual-frequency uplinks, X & Ka
 - Wide-band PN code
 - Continuous measuring of station delay
 - Regenerative spacecraft transponder
- Demonstrate the performance of ARI and assess the ranging accuracy of ARI using DSS-25 and BepiColombo spacecraft, which is the only spacecraft in operation compatible with ARI.

ARI vs. Current Ranging system

- Dual-frequency uplinks, X & Ka, and three downlinks, X/X, X/Ka, Ka/Ka
- Wide-band Pseudo-random Noise (PN) code ranging with higher PN chip rates
- Add a Zero Delay Device (ZDD) for Ka/Ka
- Open-Loop Ranging
- New ranging signal processor (ARP)
- Continuous measuring of station delay through Test Translator for X/X, X/Ka, Ka/Ka

Spacecraft upgrades:

• Transponder re-generates the uplink PN ranging signal

Comparison	ARI	Current Ranging
One-way Range Accuracy	0.1 m unconditionally	1 m conditionally
Restriction	Independent of SEP	SEP > 30°
Frequency Links Uplink & Downlink	Simultaneous multi-frequency ranging X/X, X/Ka, Ka/Ka	Single X/X
Plasma Calibration	Completely calibrate plasma noise	N/A
Station Delay Calibration	Continuously measure for X/X, X/Ka, Ka/Ka	Pre-cal or Post-cal
Tracking mode	Open-loop	Closed-loop
Signal Processing	Post-processing	During a track
S/C Transponder	Regenerative	Non-regenerative
DSN Uplink Ranging System	X and Ka	X
Ranging Scheme	T2B, T4B PN code (CCSDS)	Sequential, DSN PN
PN code chip rate	~3 Mcps for X, ~24 Mcps for Ka	~2 Mcps for X

Research Presentation Conference 2020

Performances

Perform a series of ranging experiments with DSS-25 and BepiColombo and assess range measurement accuracy of ARI

Two Ranging Campaigns:

- 12 Tracking passes in May, 2019
- 6 Tracking passes in August- September, 2019
- Two-way uplink and downlink by DSS-25
- Three-way uplink from Malargüe (MLG) station and downlink to DSS-25

Date	Duration	Mode	X/X Range	X/Ka Range	Ka/Ka Range	X Chip Rate	Ka Chip Rate
May 2, 2019	1.3 Hrs	3-way			Y		~24 Mcps
May 6, 2019	2.1 Hrs	2-way	Y	Y		~2 Mcps	
May 11, 2019	2.3 Hrs	2-way	Y			~2 Mcps	
May 12, 2019	1.7 Hrs	2-way	Y			~2 Mcps	
May 13, 2019	2.3 Hrs	3-way			Y		~24 Mcps
May 16, 2019	1.4 Hrs	3-way			Y		~24 Mcps
May 17, 2019	2.5 Hrs	3-way			Y		~24 Mcps
May 20, 2019	3.1 Hrs	3-way			Y		~24 Mcps
May 21, 2019	2.3 Hrs	3-way			Y		~24 Mcps
May 23, 2019	1.5 Hrs	3-way			Y		~24 Mcps
May 27, 2019	2.7 Hrs	2-way	Y			~3 Mcps	
May 29, 2019	2.7 Hrs	3-way			Y		~24 Mcps
Aug 11, 2019	2.5 Hrs	2-way			Y		~24 Mcps
Aug 19, 2019	1.5 Hrs	2-way			Y		~24 Mcps
Aug 24, 2019	1.4 Hrs	2-way	Y		Y	~3 Mcps	~24 Mcps
Aug 25, 2019	1.5 Hrs	2-way	Y		Y	~3 Mcps	~24 Mcps
Aug 31, 2019	2.5 Hrs	2-way	Y		Y	~3 Mcps	~24 Mcps
Sep 1, 2019	1.5 Hrs	2-way	Y		Y	~3 Mcps	~24 Mcps

Research Presentation Conference 2020

Assessments

- Data were acquired at both DSS-25 and MLG station. Joint analysis of data from the two networks is required for validation of range accuracy.
- Data fits validated the precision and internal consistency of DSS-25 two-way at the sub-centimeter level.
- Further tracking data campaign and joint analysis with data from two stations are required to validate the absolute accuracy of 10 cm level.

Publications and References

Publications:

Border, J. S., Paik, M., Lee C., Shin, D., Volk, C., "Demonstration of Advanced Ranging Instrument," IPN report, Nov. 2020, in press

Paik, M., Border, J. S., Esterhuizen, S., and Shin, D. K., "Advanced Ranging Instrumentation," IPN report, v 42-215, pp 1-13, 2018.

References:

less, L., Asmar, S., and Tortora, P., "MORE: An advanced tracking experiment for the exploration of Mercury with the mission BepiColombo," Acta Astronautica, vol. 65, no. 5-6, pp. 666–675, 2009.

Iess, L., Cappuccio, P., Notaro, V., Border, J. S., Asmar, S. W., Paik, M., Simone, L., Ciarcia, S., Lanucara, M., Montagnon, E., Mercolino, M., Tortora, P., Zannoni, M., "Results from the Initial Tests of the Mercury Orbiter Radioscience Experiment (MORE) on BepiColombo," 8th ESA International Workshop on Tracking, Telemetry and Command Systems for Space Applications, 2019.

CCSDS 503.0-B-2, Recommendation for Space Data System Standards, Tracking Data Message, Blue Book, Issue2, June 2020.