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Abstract

The objective of this research was to investigate the path towards achieving a highly efficient Ka-band (31.8 to 32.3 GHz)
solid-state power amplifier for deep-space telecommunications applications. The goal of this 3-year task is to develop a
high-efficiency power amplifier that can provide approximately 500 bps of telemetry downlink to the DSN at a
range of 10 Astronomical Units in conjunction with the 42 dBi gain from the Ka-band Parabolic Deployable Antenna. The
development of such a Ka-band SSPA fills the gap between various other investments in advanced software-defined radios
(SDRs) and deployable antenna technologies.

The main objectives for Year-2 of this 3-year task was to 1) complete the design of a high-efficiency monolithic GaN
amplifier MMIC for a target fabrication start-date of January 2020, 2) continue the investigation of an alternate discrete
approach to providing impedance matching, and 3) complete the optimization of the spatial power-combiner and fabricate it
for test. 2020 has been a challenging year with the COVID-19 pandemic affecting various sectors, introducing large
uncertainties for fabrication plans and delivery dates. Some course corrections were necessary as a result, but many goals
were still met despite the disturbance.
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~ Problem Descﬁﬁﬁ‘ﬁ

1. Spectrum allocation for deep-space comm
* S-band is effectively closed due to limited bandwidth
* X-band is getting crowded as current workhorse

* Ka-band remains largely unused despite advantages

2. Disadvantages of vacuum-based amplifiers
* Mass/volume prohibitive on SmallSat platforms
* Requires extensive high-voltage expertise
* Sensitive to dynamic shock/vibration environments

* US manufacturing capability disappearing

3. No suitable commercial devices available today
* Vendors focus on wideband GaN devices
* Low efficiency < 30% to cover multi-GHz bandwidth
* Focus is NOT the DSN band (31.8-32.3 GHz)

e 27-31 GHz: Satcom
e 32-38 GHz: Radar, Terrestrial Comm, and EW

S-band is effectively
closed due to limited
bandwidth and
terrestrial interference

X-band is the current
workhorse for deep
space communication,
but getting crowded

Ka-band is largely unused

* ~10x bandwidth capacity

+ ~16x antenna gain efficiency
* ~4x radiometric precision
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Monolithic GaN MMIC Approach

Develop harmonically-tuned GaN amplifier to optimize efficiency

* Recent advances on GaN processes provide shorter gate length
* Reduced parasitic reactance = higher frequency response

» Selected CREE/Wolfspeed’s 150-nm GaN/SiC process

* Highest output power and maturity amongst competitor processes

Performed harmonic source-/load-pull characterization to determine optimum impedances for peak efficiency
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Monolithic GaN MMIC Approach

Topology:
Frequency:
Pout:

PAE:

X/Y Size:
S11 /S22:
S21:
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TGA2224
32-38 GHz 5 Watt GaN Amplifier

Key Features
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« Paar (Pn=21 dBm): > 37 dBm
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TGA2222
32-38 GHz 10 Watt GaN Amplifier

CMD217

28-32 GHz GaN Power Amplifier
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Significance of Result:

* Best-in-class PAE using CREE’s 150-nm GaN/SiC
process providing tuned performance for the DSN’s
31.8-32.3 GHz Ka-band downlink frequency allocation

* Similar technique employed on other GaN processes
(HRL, OMMIC, NGAS) could potentially yield even
higher efficiencies with future maturity
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Effects of Losses at 32 GHz for a Hybrid Off-Chip Matching Approach

Develop harmonically-tuned GaN amplifier using high-Q off-chip elements

* Bond-wire interconnect from drain of GaN transistor to off-chip matching network
* Microstrip resonator matching network on standard Alumina substrate

* Custom-tuned single-layer capacitor for output DC block
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Effects of 2"9-harmonic Losses at 64 GHz for a Hybrid Off-Chip Matching Approach
On-chip Off-chip

Bond-wire(s)
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2) Bond-wire resistive losses contract overall area and
reactance presents phase shift to impedances

This illustrates that there is no passive impedance that can be realized in an off-chip matching
network that will result in the harmonic impedances necessary for high-efficiency operation.
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Spatial Power Combiner for Higher Output Power

Mode Converter
TEO1 CWG to TE10 RWG
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* Spatial combiners use waveguide modes to power combine the amplified EM waves for high output power

* Compared to the 6-way rectangular design from Year-1, a novel 8-way radial design shows significant bandwidth
improvement of over 10x with low loss of approximately 0.6 dB

* Coupled with the 2.5-Watt 37%-efficient MMIC, the expected combined RF output power is 18 Watts with an
overall efficiency of 32%

* Link budget using a 42-dBi antenna to a DSN station with convolutional coding shows maximum downlink rate of
700 bps can be supported with 3 dB of margin at 10 AU
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« Off-chip hybrid matching for high-efficiency operation at Ka-band is not feasible, due to
large losses and impedance transformations introduced by bond-wire interconnects, DC
blocking capacitors, and intrinsic device parasitic of GaN transistors

* A highly-efficient (35-37% PAE) 2.5-Watt MMIC power amplifier using CREE’s V5 150-nm
GaN/SiC process was designed for operation in the DSN 31.8-32.3 GHz frequency band,
providing significant improvement against commercially-available devices that are
typically < 20% PAE

* A novel 8-way radial spatial power combiner was designed to provide low-loss power
combination for the DSN 31.8-32.3 GHz frequency band

« An 18-Watt RF output, 32% overall efficiency SSPA can be expected from the
combination of the 2.5-W MMIC and 8-way spatial combiner designed in this study.

« The 18-Watt SSPA coupled with a 42-dBi antenna is expected to provide over 500 bps of
telemetry downlink to the DSN from a range of 10 AU (Saturn)



