
Virtual Research Presentation Conference
Automating DSN Scheduling Using Quantum Computing & Deep Reinforcement Learning

RPC-124

Principal Investigator:  Brian Wilson (174B)
Co-Is:  A. Guillaume, E. Goh, H. Venkataram, S. Alimo, M. Johnston, S. Sahnoune
Program: Strategic Initiative, 9X Quantum Scheduling



• Team 
– PI Brian Wilson (174B)
– Co-I Alexandre Guillaume (398K):  Quantum Computing Lead
– Co-I Edwin Goh (174B):  Deep Reinforcement Learning
– Co-I Hamsa Venkataram (174B):  Deep Reinforcement Learning
– Co-I Sharouz “Ryan” Alimo (393K) & post-doc:  Nonconvex optimization, DL
– Co-I Mark Johnston (9270):  Scheduling expert, impacts/assessment
– Co-I Sami Sahnoune (174B):  Schedule visualization

– Collaborations with:
– Daniel Lidar and others at USC (Adiabatic QC Group), for Fujitsu Digital Annealer
– Fred Glover at Meta-Analytics, for Alpha-QUBO solver
– Microsoft QIO group, developing custom solver for us
– Jonathon Sabol and Dr. Ramtin Madani at UT Arlington, for advanced MILP solver

Team and Collaborators



The Challenge
• DSN tracks many spacecraft
• At times, antennas are very over-subscribed, 

up to 60%
• Automated scheduling leaves ‘conflicts’ that 

humans resolve
• Formulate as a Multi-objective, Combinatorial 

Optimization problem
• To resolve conflicts:

• Move, split or shorten tracks
• Use priorities
• Humans “relax requirements” and 

missions negotiate tradeoffs
• Mission health & safety and science return are 

paramount

S3 tool showing “conflicting” tracking requests before 
any scheduling resolution

Remaining conflicts after multi-pass scheduling



Combinatorial Optimization Problem
• Algorithm Formulation

• Binary integer variables (0 or 1)
• Discrete time slots

xijk = 1
means
Spacecraft i scheduled on
Antenna j for
Time slot k

• Large Set of Request Types and Constraints
– One spacecraft tracked in each time slot (except for Mars)

– Track durations less than request are penalized
– Required resources:  34m or 70m antenna, uplink/downlink 
– Coherent Arraying:  Use 2, 3, or 4  34m antennas together

0 0 1 1 1 1 1 0 0 1 1 1

5 or 15-minute time slots

SC #1 SC #2



The Slotting Game
• Place spacecraft tracking passes to satisfy mission requests 

(User Loading Profiles or ULP’s)
• Subject to view periods, and requested resources

• When conflicts arise, apply strategies to resolve them:
• Move a pass to another antenna or another complex
• Slide a pass to accommodate another spacecraft
• Shorten a pass to accommodate another spacecraft
• Split a pass, but retaining segments of sufficient length
• Drop a pass, to give priority to a critical event 

VP1 VP2

Pass 1 Pass 2 – doesn’t fit in VP2Pass 0

Overlapping View Periods

xxxx



Quantum Computing
• Two main approaches:

• Circuits of Quantum Gates (IBM, 
Microsoft, Google, Rigetti)

• D-Wave Quantum Annealing

• D-Wave Adiabatic QC ideal for solving 
optimization problems
• Scaling exponentially, from 50 to 2000 to 

5000 quantum bits (qubits)
• Quadratic Unconstrained Binary Optimization 

(QUBO) solver
• Use software layers, or directly

• Already applied to Scheduling
• Job Shop Scheduling: demonstrated at NASA 

Ames
• However, the DSN type of scheduling problem 

has not yet been mapped to D-Wave

D-Wave



Deep Reinforcement Learning
• Deep Learning has revolutionized “AI” 

problems
• Language translation
• Text summarization, image captions
• Object detection in images
• Face recognition
• Predicting ’action’ in videos

• Deep RL has ‘solved’ many problems 
from scratch
• Games:  AlphaGo Zero plays Go better 

than humans after a week of training 
(self-play)

• Locomotion:  Robots learn to ‘walk’ 
without any innate programming

• Already applied to Scheduling
• Microsoft DeepRM:  Resource Mgmt.
• Real-time Network & CPU Scheduling

Waymo

AlphaGoZero



Three Optimization Approaches
• Mixed Integer Linear Programming (MILP), as a baseline

• Integer & Continuous Variables
• Constraints
• Quadratic Objective Function

• D-Wave:  Quadratic Unconstrained Binary Optimization 
(QUBO)

• Binary Variables
• Quadratic Objective Function

• DeepRL – Agent ”learns” a Sequence of Actions
• Binary Variables à Matrix Encoding for “state” 
• Constraints à Legal Actions for Agent
• Reward Function  à Agent learns a “policy”,

a sequence of actions to deconflict the schedule



Quantum Computing
Quantum computing is the use of quantum-mechanical phenomena such as 
superposition and entanglement to perform computation.

DSN 
requests

Optimization with D-Wave quantum annealer
(NASA-Ames, D-Wave, Amazon Braket, LANL)

DSN 
schedules



Quantum Computing
Quantum computation and quantum information is the study of the information 
processing tasks that can be accomplished using quantum mechanical systems.

⟩|0 + ⟩|1
2

One qubit

⟩|𝜓 = 𝑎 ⟩|00 +b ⟩|01 +c ⟩|10 +d ⟩|11

Multiples qubits

CNOT

Classical AND

Hadamard

Gates

Algorithms kinds:
-quantum version of the Fourier 
transform
-quantum search algorithm
-quantum simulations

Quantum parallelism

Require specifically designed 
measurements to extract information.

“simultaneous” evaluation.
Message:
• Access to gigantic search space
• Single-shot like readout (speed)
• Require specifically designed 

algorithms to get the information
• Difficult to keep the quantumness

on large scales



Quantum Annealing

Description: A 2-dimensional array of magnetic moments 𝑠.

What it does: solve a particular (Ising) optimization problem

Provided 𝒉 and 𝑱 find the configurations of 𝑠 that minimizes 𝐸.

Pros: It exists, it works, we have access to it. NASA Ames has 
2038 qubits. D-Wave is working on the 5,640 Pegasus qubit.
Cons: restricted purpose (akin to GPU or FPGA).

Quantum annealing (QA) is a metaheuristic for finding the global 
minimum of a given objective function over a given set of candidate 
solutions (candidate states), by a process using quantum fluctuations.

is a Canadian company founded in 1999.

It sells "the world's first commercially available quantum computer"



QUBO Formulation:  Quadratic Unconstrained Binary Optimizaton
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One QUBO Formulation:  multiple solvers

DSN schedule run with Alpha-QUBO. The vast majority of the 
request were fulfilled (99%) but some conflicts remain. Some odd 
features are due to the DSN input data, e.g. the antenna DSS-45 was 
decommissioned half way through this particular week (44 of 2016).

platforms variables

2,000

\\ Quantum (annealer):

10,000
\\ hybrid (quantum/classical):

+100,000

\\ Quantum inspired
optimization (QIO):



Deep Reinforcement Learning (now using RLlib)
• Agent learns a sequence of “actions” to solve the 

problem (de-conflict the schedule).
• Track actions:  place, move, drop, re-select, etc.

• Agent encodes policy in a Deep Neural Net 
(DNN)

• Agent selects next track to place
• Agent queries the environment at current 

‘state’ and receives a choice of legal actions
• Agent chooses an action, updates state, and 

receives an incremental reward
• Action space is large so ‘learning’ is difficult 

and requires many iterations
• Policy:  Tradeoff between exploration & 

exploitation



Early DeepRL Results
• Improved formulation using capabilities of RLlib

• Same problem:  week 44 of 2016
• Agent beginning to learn (better than random)
• Distribution of total rewards for best agent 

versus random (upper right)
• However, scheduled hours per mission show 

no or only small increases (lower right).
• Number of scheduled requests low compared 

to QUBO or MILP
• Next steps:

• Improved encoding of action space into ‘features’
• Dynamic action spaces
• More experiments, longer training times



• Variables are binary, integers, or continuous
• Maximize an objective subject linear constraints
• Large number of constraints to be handled

• Some require adding variables

• Use convex relaxation to reduce the number of variables
(relax integers to continuous variables)

• E.g. 200,000 variables reduced to 30,000
• Solve smaller problem using AMPL / Gurobi

Mixed Integer Linear Programming (MILP v2)

Convex Relaxation



MILP Formulation:  version 2 is complicated!



MILP Results for week 44 of 2016 (2 formulations)

Improvement in the generated schedule and number of requests fulfilled 
(264 out of 289, instead of 107) in moving to the second MILP formulation 
with convex relaxation.



• DSN antenna schedules are over-subscribed => hard optimization problem to 
be solved

• Not fully formulated as a mathematical problem by mission schedulers

• Applying three techniques:
• QUBO for Quantum Annealer or quantum-inspired solver
• Deep Reinforcement Learning:  large, challenging action space for agent
• MILP formulation => many variables, need advanced techniques

• Have generated ‘good’ schedules from QUBO and MILP
• Mature and compare techniques in third year:

• Metrics:  unsatisfied time fraction per mission (hours), remaining conflicts, antenna utilization
• Do schedules pass the “smell” test?  Artifacts?

Summary



(Paper on quantum results in preparation.)
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