
Virtual Research Presentation Conference
A Modeling Language for Next Generation Flight Software

Assigned Presentation RPC-128

Principal Investigator: Klaus Havelund (348)
Co-Is: Robert Bocchino (348)
Program: Topic

RPC 2020

JPL flight software (FSW) is written in C, sometimes in C++
• C is low-level and primitive
• C++ is complex and awkward
• Both are unsafe, lack modern language features, and hinder productivity

In this project we investigated
• What modern programming languages we can use instead of C and C++ for FSW

• We studied Rust and Scala
• We developed extensions to Scala

• How to add frameworks and domain-specific languages (DSLs)
• How to test and verify FSW written in the language

Introduction

• Hardware power and complexity are increasing

• Software complexity is increasing
• More mission activities
• More advanced activities, e.g., on-board planning
• Multicore programming

• Programming in C will become more and more challenging
• At some moment a breaking point will be reached
• This project is an attempt to be at the front of this path

• The project also addresses modeling of software
• Modeling is essential for programming complex applications
• Modeling must be integrated with the implementation language

Relevance to NASA and JPL

19962003 2011

Image taken from:
https://www.jpl.nasa.gov/spaceimages/details.php?id=PIA11431

https://www.jpl.nasa.gov/spaceimages/details.php?id=PIA11431

• Bounded Retransmission Protocol (BRP)
• File transfer with unreliable channels
• Sender sends file records over channel K
• Receiver sends acknowledgements over channel L
• Channels can drop messages
• Lost file records are retransmitted

• Remote Agent (RA)
• AI planning and scheduling
• Planner generates plans
• Plan execution engine executes plans
• Monitor monitors spacecraft state
• We focused on plan execution engine (shown in figure)

Programming Exercise

• Rust
• First released by Mozilla in 2010
• Provides high-level abstractions with high efficiency
• Allows low-level programming

• Scala
• Designed by the academic institution EPFL, Switzerland; first released in 2004
• Powerful combination of object-oriented and functional programming
• Runs on the Java Virtual Machine (JVM)

Programming Languages

Language Safety Efficiency Ease of Use

Rust High High Low

Scala High Medium High

Results

• Scala presents significant challenges as a FSW implementation language
• Runs on the Java Virtual Machine, not natively
• Uses garbage collection
• Provides insufficient control over memory layout

• We have begun to develop a language called FSW Scala
• Full Scala language plus new features that support FSW programming

• Native code generation
• Allocation of class instances in static storage, on the stack, and on the heap
• FSW compilation mode in which garbage collection is disabled
• Mutable and immutable references to class objects

• We have described a formal language called System E (for "embedded")
• We have proved soundness results for this formal language.

FSW Scala

FSW

Syntax of System E

E
System

F Prime

• Free, open-source FSW framework developed at JPL

• Based on components that communicate over ports

For each of Rust and Scala we did the following:

• Ported F Prime to the language

• Wrote several components

• Connected the components into an application

Frameworks

Logotype Variants

With Name

With name on color background

With name on background

f p r i m e

f p r i m e

f p r i m e

2.

v.1.01
August 2020

ASTHROS

• DSLs can be internal or external
• Internal means the DSL is expressed directly in a host language
• External means the DSL has its own parser and internal representation

• We wrote four internal DSLs in Scala
• F Prime
• HSM for programming with Hierarchical State Machines
• Daut for monitoring with Data automata
• Rules for rule-based testing

• In Scala, we implemented an external DSL for hierarchical state machines
• Parsing, type checking
• Visualization

Domain-Specific Languages (DSLs)

Scala makes it easy to construct DSLs

Four Internal DSLs

External HSM DSL

• We studied several tools for theorem proving
• Stainless for Scala
• Logika for an embedded programming version of Scala
• Viper for Rust

• Theorem proving is powerful but difficult to use

• A lighter-weight approach is automated testing
• We studied the P programming language (Microsoft)
• Supports automated testing of state machines
• This kind of technology seems more suited for practical use

• We investigated runtime monitoring for use in flight
• A key challenge is to make it memory efficient
• We investigated the use of memory pools

Test and Verification

• FSW Scala
• High potential

• More work required

• Potential for outside collaboration

• Rust
• Pro: Clear path to implementing FSW code

• Con: Programming difficulty

• F Prime
• Opportunities for refactoring

• Potential for new back ends

• Potential for adding state machines

• DSLs
• New: F Prime, rule-based

• F Prime integration: HSM, Monitoring

Results
FSW

Logotype Variants

With Name

With name on color background

With name on background

f p r i m e

f p r i m e

f p r i m e

2.

v.1.01
August 2020

ASTHROS

[A] Robert Bocchino and Klaus Havelund, "RustSpot: A Little Rust, for Explanation", in preparation.

[B] Robert Bocchino and Klaus Havelund, “A Lambda Calculus for Embedded Programming”, in preparation.

[C] Manfred Broy, Klaus Havelund, Rahul Kumar, and Bernhard Steffen, “Towards a Unified View of Modeling and
Programming”, Leveraging Applications of Formal Methods, Verification and Validation, ISoLA’18, Lecture Notes in
Computer Science volume 11244, pp. 3-21, Springer, Limassol, Cyprus, Oct 30-Nov 1, 2018.

[D] Klaus Havelund and Robert Bocchino, “Component-based Programming in Scala - Can Embedded Programming be
Made Easy?”, August, to be submitted, 2020.

[E] Klaus Havelund and Rajeev Joshi, “Modeling with Scala”, Leveraging Applications of Formal Methods, Verification and
Validation. ISoLA’18, Lecture Notes in Computer Science volume 11244, pp. 184-205, Springer, Limassol, Cyprus, Oct 30-
Nov 1, 2018.

[F] Daniel Tellier, Meyer Millman, Brian McClelland, Kate Beatrix Go, Alice Balayan, Michael J Munje, Kyle Dewey, and
Nhut Ho, Klaus Havelund, and Michel Ingham, “Towards the Hierarchical State Machine Oriented Proteus Systems
Programming Language”, to appear in AIAA ASCEND’20, 2020.

Publications

[1] Nada Amin, Karl Samuel Grütter, Martin Odersky, Tiark Rompf, and Sandro Stucki, "The Essence of Dependent Object
Types", Lecture Notes in Computer Science, Volume 9600, Springer, 2016.

[2] Robert Bocchino, Timothy Canham, Garth Watney, Leonard Reder, and Jeff Levison, “F Prime: An Open-Source
Framework for Small-Scale Flight Software Systems, In 32nd Annual AIAA/USU Conference on Small Satellites, Utah
State University, 2018.

[3] Steve Klabnik and Carol Nichols, "The Rust Programming Language", No Starch Press, Inc., Mozilla Corporation and
and the Rust project Developers, June 26, 2018.

[4] Martin Odersky, Lex Spoon, and Bill Venners, "Programming in Scala", Artima Incorporation, USA, 3rd edition, 2016.

[5] Richard Whaling, "Modern Systems Programming with Scala Native", Pragmatic Bookshelf, 2020.

References

