RPC 2020

Virtual Research Presentation Conference
A Modeling Language for Next Generation Flight Software

Principal Investigator: Klaus Havelund (348) N Y
Co-Is: Robert Bocchino (348) @ Jet Propulsion Laboratory
Program: Topic

California Institute of Technology

Assigned Presentation RPC-128

Research Presentation Conference 2020

Introduction

JPL flight software (FSW) is written in C, sometimes in C++

+ Cis low-level and primitive

+ C++is complex and awkward

« Both are unsafe, lack modern language features, and hinder productivity

In this project we investigated

« What modern programming languages we can use instead of C and C++ for FSW
* We studied Rust and Scala
* We developed extensions to Scala

* How to add frameworks and domain-specific languages (DSLs)

» How to test and verify FSW written in the language

““High Level

Machine
Code

Research Presentation Conference 2020

Relevance to NASA and JPL

. Hardware power and complexity are increasing

. Software complexity is increasing
. More mission activities
. More advanced activities, e.g., on-board planning
. Multicore programming

. Programming in C will become more and more challenging
. At some moment a breaking point will be reached

. This project is an attempt to be at the front of this path

. The project also addresses modeling of software
. Modeling is essential for programming complex applications Image taken from:
* Modeling must be integrated with the implementation language https://www.jpl.nasa.gov/spaceimages/details.php?id=PIA11431

https://www.jpl.nasa.gov/spaceimages/details.php?id=PIA11431

Research Presentation Conference 2020

Programming Exercise

* Bounded Retransmission Protocol (BRP)

File transfer with unreliable channels

Sender sends file records over channel K

Receiver sends acknowledgements over channel L
Channels can drop messages

Lost file records are retransmitted

* Remote Agent (RA)

Al planning and scheduling

Planner generates plans

Plan execution engine executes plans
Monitor monitors spacecraft state

We focused on plan execution engine (shown in figure)

- .\A'.\\ o
REQ(f) P ey IND(m 1}
“| Sender Receiver =
CONF(c) T W IND_ERR
Spacecraft
P .
Control .~ —H K
Commands~ Achicve -
Y 4 P“'I‘:”.“_ C Monitors
Tusks Property Locks \
, i A {1 r
-_.) - _B ON D;@usc
b i A C| o0 ~u _—
== Subseribe | {'\‘:‘;'
" Z | OFF
Task -
»_ Interrupe >
- -)
. e -~ Upsdate
i - {) 4 Lvent

Mamntain Properties
Daeman

Research Presentation Conference 2020

Programming Languages

* Rust
* First released by Mozilla in 2010

* Provides high-level abstractions with high efficiency
* Allows low-level programming RUST

* Scala
& Scala

* Designed by the academic institution EPFL, Switzerland; first released in 2004
* Powerful combination of object-oriented and functional programming
* Runs on the Java Virtual Machine (JVM)

Results
Rust High High
Scala High High [

Research Presentation Conference 2020

FSW Scala

+ Scala presents significant challenges as a FSW implementation language
* Runs on the Java Virtual Machine, not natively
* Uses garbage collection

* Provides insufficient control over memory layout

+ We have begun to develop a language called FSW Scala

* Full Scala language plus new features that support FSW programming
* Native code generation
* Allocation of class instances in static storage, on the stack, and on the heap
* FSW compilation mode in which garbage collection is disabled
* Mutable and immutable references to class objects

* We have described a formal language called System E (for "embedded")
* We have proved soundness results for this formal language.

FSW

£ Scala

Research Presentation Conference 2020

Syntax of System E

Natural Numbers
Size Parameters
Binary Operators
Size Expressions
Variable Names
Lifetime Qualifiers
Mutability Qualifiers
Expressions

Permanent Types
Types

—

-— _
D RN RE Ty 3

N v

System
0j1]2]...

+ | *
nl|s|(SBS)

¢ | local

val | var

Sllet LMxz=eine | L ANL M x:T)e | ws.e |
x|(ee)| &M e |xe| (e=¢€) | (e Be)| obj(S)
nat |7 — T | [Is.T | ref M T | obj(S5)

P |local T — T | ref local M T

Research Presentation Conference 2020

Frameworks
[. ’
F PRI M E

F Prime ‘
* Free, open-source FSW framework developed at JPL

« Based on components that communicate over ports

ConsoleReader ConsoleWriter

For each of Rust and Scala we did the following:

» Ported F Prime to the language

» Wrote several components

+ Connected the components into an application

Research Presentation Conference 2020

Domain-Specific Languages (DSLs)

* DSLs can be internal or external
* Internal means the DSL is expressed directly in a host language
* External means the DSL has its own parser and internal representation

* We wrote four internal DSLs in Scala

* FPrime 1

* HSM for programming with Hierarchical State Machines :

eeeeeeee

* Daut for monitoring with Data automata

* Rules for rule-based testing

* In Scala, we implemented an external DSL for hierarchical state machines

* Parsing, type checking

¢ Visualization

Scala makes it easy to construct DSLs

Research Presentation Conference 2020

object on extends state() {
when {
case ShutDown => off exec {
o_obs.logEvent(EvrimageAborted)
o_cam.invoke (PowerOff)

HSM

}
}
}

object powering extends state(on, true) {
when {
case Ready => exposing
}
}

object exposing extends state(on)

object exposing_light extends state(exposing, true) {
entry {
o_cam.invoke(Open)
setTimer(duration)
}
exit {
o_cam.invoke(Close)

when {
case ReceiveTimeout => {
if (getTemp() >= DARK.THRESHOLD) exposing-dark

else saving

o [vor duration:int = 0
1 ‘val DARK_THRESHOLD = 5

sys_i_Instance

(off
entry {MissedEvents submit()}

Takelmage(d)/ ShutDown/

duration = e cam.invoke(Poweroff)

o_cam.invoke(Power0n)

.

(powering
Ready

(g)

Ready/
_obs logEvent(EvrimageSaved)
o_cam.invoke(Poweroff)

‘exposing_ight
‘entry {o_cam invoke(Open); setTimer(duration)}
exit{o_cam.invoke(Close))

ReceiveTimeout if getTemp() >= DARK_THRESHOLD

exposing_dark]

ReceiveTimeout

A T
lentry{o_cam. invoke(SaveData)}

ReceiveTimeout if getfemp() < DARK_THRESHOLD)

val imaging = new Imaging F,
val camera = new Camera
val ground = new Ground

imaging.o_cam.connect(camera.i_-img)
imaging.o_obs.connect(ground.i_obs)
camera.o-img.connect(imaging.i-cam)
camera.o_obs.connect(ground.i_obs)

ground .o.cmd. conncct(imaging.i-cmd)

object SaveOrAbort extends Monitor[Observation] {
always {
case EvrTakelmage(-) => hot {
case EvrimageSaved | EvrimageAborted =>
ok
case EvrTakelmage(-) =>
error ("lmage.was.not.saved.or.aborted”)

} Daut

object TestRules extends Rules {
val MAXIMAGES: Int = 1000
val MAXSHUTDOWNS: Int = 1000
val MAXREADY: Int = 1000

Rules

var imageCount: Int =0
var shutdownCount: Int =0
var readyCount: Int = 0

rule (" Takelmage”) (imageCount < MAXIMAGES) —> {
o_cmd. invoke ((Takelmage(imageCount)))
imageCount += 1

rule(”ShutDown”) (shutdownCount < MAXSHUTDOWNS) —> {
o_cmd. invoke (ShutDown)
shutdownCount += 1

}

rule(”Ready”) (readyCount < MAXREADY) —> {
o_cam.invoke (Ready)
readyCount += 1

}

strategy (Pick ())

/

Four Internal DSLs

Research Presentation Conference 2020

state on {
when {
ShutDown =r> off {
o_obs. logEvent (EvrImageAborted)
o_cam. invoke (Power0ff)
}
}

initial state powering {
when {
Ready =d> exposing
}
}

state exposing {
initial_r state exposing_light {
entry {
o_cam. invoke(Open)
setTimer(duration)
}
exit {
o_cam. invoke(Close)
}
when {
ReceiveTimeout if [getTemp() >= DARK_THRESHOLD] =u> exposing_dark
ReceiveTimeout if [getTemp() < DARK_THRESHOLD] =1> saving
}
}

state exposing_dark {
entry {
setTimer(duration)

}
when {
ReceiveTimeout =r> saving

}

P

Automatically visualized

External HSM DSL

on

‘ReadyO

exposing

®

\ exposing_light |
entry{o_cam.invoke(Open)
setTimer(duration)}
exit{o_cam.invoke(Close)}

N\

A

\ exposing_dark |
\entry{setTimer(duration)} |

/~ N\
(ReceiveTimeout() if [getTemp() >= DARK_THRESHOLD}

// ReceiveTimeout() if [getTemp() < DARK_THRES

\ReceiveTimeout()

N\

5N

saving |

\entry{o_cam.invoke(SaveData)} |

Research Presentation Conference 2020

Test and Verification

We studied several tools for theorem proving
* Stainless for Scala
* Logika for an embedded programming version of Scala
* Viper for Rust

Theorem proving is powerful but difficult to use

A lighter-weight approach is automated testing
* We studied the P programming language (Microsoft)
* Supports automated testing of state machines
* This kind of technology seems more suited for practical use

+ We investigated runtime monitoring for use in flight
* A key challenge is to make it memory efficient
* We investigated the use of memory pools

Research Presentation Conference 2020

Results

FSW Scala

. High potential

. More work required

. Potential for outside collaboration
Rust

. Pro: Clear path to implementing FSW code

. Con: Programming difficulty
F Prime

. Opportunities for refactoring

. Potential for new back ends

. Potential for adding state machines
DSLs

. New: F Prime, rule-based

. F Prime integration: HSM, Monitoring

FSW

£ Scala

@ The Rust
Programming
Language

_’
F PRI ME

Research Presentation Conference 2020

Publications

[A] Robert Bocchino and Klaus Havelund, "RustSpot: A Little Rust, for Explanation®, in preparation.
[B] Robert Bocchino and Klaus Havelund, “A Lambda Calculus for Embedded Programming”, in preparation.

[C] Manfred Broy, Klaus Havelund, Rahul Kumar, and Bernhard Steffen, “Towards a Unified View of Modeling and
Programming”, Leveraging Applications of Formal Methods, Verification and Validation, ISoLA'18, Lecture Notes in
Computer Science volume 11244, pp. 3-21, Springer, Limassol, Cyprus, Oct 30-Nov 1, 2018.

[D] Klaus Havelund and Robert Bocchino, “Component-based Programming in Scala - Can Embedded Programming be
Made Easy?”, August, to be submitted, 2020.

[E] Klaus Havelund and Rajeev Joshi, “Modeling with Scala”, Leveraging Applications of Formal Methods, Verification and
Validation. ISOLA'18, Lecture Notes in Computer Science volume 11244, pp. 184-205, Springer, Limassol, Cyprus, Oct 30-
Nov 1, 2018.

[F] Daniel Tellier, Meyer Millman, Brian McClelland, Kate Beatrix Go, Alice Balayan, Michael J Munje, Kyle Dewey, and
Nhut Ho, Klaus Havelund, and Michel Ingham, “Towards the Hierarchical State Machine Oriented Proteus Systems
Programming Language”, to appear in AIAAASCEND’20, 2020.

Research Presentation Conference 2020

References

[1] Nada Amin, Karl Samuel Gratter, Martin Odersky, Tiark Rompf, and Sandro Stucki, "The Essence of Dependent Object
Types", Lecture Notes in Computer Science, Volume 9600, Springer, 2016.

[2] Robert Bocchino, Timothy Canham, Garth Watney, Leonard Reder, and Jeff Levison, “F Prime: An Open-Source
Framework for Small-Scale Flight Software Systems, In 32nd Annual AIAA/USU Conference on Small Satellites, Utah
State University, 2018.

[3] Steve Klabnik and Carol Nichols, "The Rust Programming Language", No Starch Press, Inc., Mozilla Corporation and
and the Rust project Developers, June 26, 2018.

[4] Martin Odersky, Lex Spoon, and Bill Venners, "Programming in Scala", Artima Incorporation, USA, 3rd edition, 2016.
[5] Richard Whaling, "Modern Systems Programming with Scala Native", Pragmatic Bookshelf, 2020.

