

Virtual Research Presentation Conference

A Scalable, Flexible Instrument Simulation Toolkit for Mission Design

Principal Investigator: Brian Wilson (174B) Co-Is: Derek Posselt, Rachel Storer, Noppasin Niamsuwan, Benyng Tang, Berlin Chen Program: Topic

Jet Propulsion Laboratory California Institute of Technology

#R19135

Highlights:

- Using Cluster computing to run 100+ Million OSSE's to characterize science return and quantify uncertainties for various mission designs.
- Led to a won <u>AIST'18 Project</u>: Evaluating Designated Observables for the Aerosol and Cloud, Convection & Precipitation (ACCP) Mission
- Developed open-Source <u>PARMAP</u> Library: Re-deployable Map-Reduce parallel computing with a choice of backend schedulers: multicore, Spark, Dask, and AWS on-demand Lambda functions.

*OSSE = Observation System Simulation Experiment

Parallel OSSE Toolkit: A Collaboration between Scientists & Technologists

Schematic of the Mission Design Workflow

Research Presentation Conference 2020

Architecture of the Parallel OSSE Framework

Applying PARMAP Python Library: Easy, Redeployable <u>Parallel Computing for Everyone</u>

- PARMAP library (easy parallel computing in Python):
 - Provides Map-Reduce operations over data, files or S3 URL's
 - Enables parallel analytics over time, spatial tiles, variables, model ensembles, multiple experiments, etc.
- Deploy in multiple modes (without code changes):
 - Multicore or GPU parallelism (single node)
 - PySparkling (pure Python library)
 - Full Apache PySpark Cluster
 - Xarray / Dask Cluster (dask.distributed scheduler)
 - AWS Lambda Functions (fleet of workers)
- Choose type of Parallelism at deployment or run time
 - <u>Mode string</u> = 'multicore', 'spark', 'dask, or 'lambda'
 - Credentials encapsulated in a 'config' dictionary
 - Combine parallelism patterns: Multicore & Distributed
 - Tailor scale of parallelism to data size & data locality

Simple coding for computing analytics in parallel over a file / tile / url series: def metricFn(ncFile, variable): . . . results = parmap(metricFn, urls, mode='lambda', numWorkers=32, config)

Notebook Analytics: PARMAP Cloud Architecture

PARMAP Serverless: Use Lambda Functions at AWS

Cloud Paradigm:

- NetCDF / HDF files series reside in S3 (NASA pays for storage)
- · Hot Variables can be tiled & cached for even better performance
- User pays compute costs for parallel analytics Lambdas or Containers
- Simple parallel coding using PARMAP library in Jupyter Notebooks

Serverless Backend (transparent to user):

- Parallel Analytics computed in fleet of Lambda Workers
- Aggregation/reduce "in memory" using AWS ElastiCache (redis)
- Only final results saved on disk in S3 (no disk bottleneck)
- AWS Lambda functions bill every 1/10th of a second

Near-Zero Costs Except When Actually Computing

- User pays for Lambda Workers & transient ElastiCache (key/val)
- No permanent Spark / Cassandra cluster needed
- At NCCS, using on-demand Dask Clusters for compute
- No permanent databases needed for most datasets (except time/space lookups for satellite swaths)

AWS Serverless Design

Example of Forward Model Results

Bayesian Optimal Estimation Retrieval

Given a measurement Y we want to know the most likely state X
P(x|y) = P(y|x) P(x)

P(y|x) – Forward model y = F(x), linearized as y=KxP(x) – Prior knowledge x_a each term has associated error matrix **S**

• Minimize cost function

$$(y - Kx)^T S_e^{-1} (y - Kx) + (x - x_a)^T S_a^{-1} (x - x_a)$$

Example Case: Retrieve Cloud Water Path in shallow clouds

- Observation **y**
 - Radar reflectivity from Quickbeam forward model
 - Cloud optical depth
- State **x** to be retrieved
 - Profile of cloud water content
 - Constant value of droplet number in height
- Assumed prior knowledge \mathbf{x}_{a}
 - Constant profile of cloud mixing ratio 1 g/kg
 - Cloud droplet number concentration 300 /mg

Optimal Estimation Retrieval Validation

Figure 2. Optimal Estimation retrieval of Cloud Water Path for many profiles. (a) Scatter plot of retrieved vs. actual for three frequencies. (b) Histogram of percentage error for the same 3 frequencies.

Research Presentation Conference 2020

Complete set of 100m+ OSSE experiments to be run in the won AIST-18 grant; cross-product of:

- 3 radar simulators
- 3 frequencies
- 75 RAMS model runs
- 15 time slices
- Particle size distributions
- 3 radar sensitivities
- 2 footprints

- Etc.

Phase 1:				Phase 2:			
Quickbeam				'Observations' (NEOS)			
Radar Frequencies		3 (Ku, Ka, W)		Radar Frequencies		3 (Ku, Ka, W)	
Parameters Varied		5 (ice hydrometeor PSDs)		Model Simulations		75	
Parameter Values		5 (0.1 to 10 times the default)		Time Slices		15 (5 in each of 3 life stages)	
Model Simulations		75		Total	3*75*15 = 3375		
Time Slices		15 (5 in each of 3 life stages)		Per Slice	Total Time	With 48 Cores	With 1024 Cores
Profiles per Time		200 (100 convective, 100		5 Hours	703	15	16.5 Hours
Total 2*5^5*		$\frac{\text{strattiorm}}{75*15*200} = 2100275000 (2.1-0)$			Days	Days	
Total Der Profile	Total	With 49	With 1024 Cores	Footprints 5 (1.5km)			
Per Prome	Time	Cores	with 1024 Cores	Footprints	rootprints 5 (1-5km)		
1.	24414	500 Davia	24 David	Total	2275*5 - 16975		
18	Days	509 Days	24 Days	Totai	5575 5 - 16875		
				Per Slice	Total	With 48	With 1024 Cores
					Time	Cores	
H&B				2.5 Hour	1758	37	2 Days
					Days	Days	
Radar Frequencies 3 (Ku, Ka, W)							
Parameters V	aried	5 (ice hydrometeor PSDs)		Retrieval (Quickbeam or H&B)			
Parameter Values		2 (largest, smallest values)		Radar Frequencies		7 (All combinations of	
						1, 2, or 3 frequencies)	
Scattering Choices		2 (single, multiple scattering)		Radar Sensitivity		9 (3 values for each	
						frequency)	
Hydrometeor Shapes		2 (spherical, non-spherical)		Footprints		6 (Native 250m, 1-5km)	
Model Simulations		75		Model Simulations		75	
Time Slices		15 (5 for each of 3 life stages)		Time Slices		15 (5 for each of 3 life stages)	
Profiles per Time		200 (100 convective,		Retrievals per Time		20 (10 convective,	
m i la consta		100 stratiform)		m . 1		10 stratiform)	
Total 3*2^5*2		2*2*75*15*200 = 86400000		Total 7*9*6*7		$5*15*20 = 8505000 \ (8.5e6)$	
(8.6e7)			D	70 x 1	TTP: 1 40	WELL LOOK C	
Per Profile	Total	With 48	With 1024 Cores	Per	Total	With 48	With 1024 Cores
-	Time	Cores	4.0	Retrieval	Time	Cores	(D
2s	2000	42 Days	2 Days	1 min	5906	123	6 Days
	Days				Days	Days	
Tetal	Tetel	W641 40	Wah 1024 Com	Tetel	Tetal	Web 40	Web 1024 Com
Total	Total	With 48	with 1024 Cores	Total	Total	With 48	with 1024 Cores
Phase 1	Time	Cores	2(D	Phase II	11me	Cores	0 D
	26414	551 Days	26 Days		8367	175	9 Days
	Days				Days	Days	

Table 1: Summary of all of the various configurations to be implemented in Phases 1 and 2, along with the expected computational time necessary to implement each phase. Compute times are based on proof-of-concept testing on the local JPL SciSpark cluster. Estimates of time necessary to run on 1024 cores is based on the assumption of linear scaling from 48 to 1024 cores.

Publications and References

[1] Wilson, B., R. Palamuttam, K. Whitehall, C. Mattmann, A. Goodman, M. Boustani, S. Shah, P. Zimdars, and Paul Ramirez, "SciSpark: Highly Interactive In-Memory Science Data Analytics", peer-reviewed proceedings of the *IEEE Big Data Conference*, December 5, 2016.

[2] Haynes, J.M., R.T. Marchand, Z. Luo, A. Bodas-Salcedo, and G.L. Stephens, "A multi-purpose radar simulation package: Quick-Beam.", *Bull. Amer. Meteor. Soc.*, 88, 2007, 1723-1727.

[3] Tanelli, S., et al., "Integrated instrument simulator suites for Earth science", *Proc. SPIE 8529, Remote Sensing and Modeling of the Atmosphere, Oceans, and Interactions IV*, 85290D (8 November 2012); doi: 10.1117/12.977577.

[4] Niamsuwan, N., S. Tanelli, M. P. Johnson, D. Dao, J. Jacob, S. Jaruwatanadilok, S. Oveisgharan, M. Simard, F. J. Turk, N. Majurec, and L. Tsang, "NASA Earth Observing System Simulator Suite (v 2.0)", *Earth Science and Technology Forum 2014*, Leesburg, VA, Oct 29, 2014.

[5] Rodgers, C. D., "Inverse Methods for Atmospheric Sounding", *Theory and Practice, World Sci.*, Singapore, 2000.