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CMIP3/C4MIP emulation with MAGICC6 is 811–
1170ppm. As discussed above, the lower range of the
CMIP5 ESMs is due to one single model, MRI-ESM1,
which already severely underestimates the present-day
atmospheric CO2 concentration. Not including this model
would mean that the lower end of the MAGICC6 range is
significantly lower than the lower end of theCMIP5ESMs.
The warming ranges simulated by the CMIP5 ESMs

and by the CMIP3/C4MIP model emulations are quite
similar (Figs. 2b and 2d). The first set of models displays
a full range of 2.58–5.68C, while the latter set has a 90%
probability range of 2.98–5.98C.

5. Twenty-first-century land and ocean carbon cycle

To further understand the difference in simulated
atmospheric CO2 over the twenty-first century, we
analyzed the carbon budget simulated by the models, as
already done for the historical period. In the E-driven
runs, the ESMs simulate the atmospheric CO2 concen-
tration as the residual of the prescribed anthropogenic

emissions minus the sum of the land and ocean carbon
uptakes—these latter two fluxes being interactively
computed by the land and ocean biogeochemical com-
ponents of the ESMs. Figure 4 shows the cumulative
land and ocean carbon uptakes simulated by the CMIP5
ESMs. Any difference in simulated atmospheric CO2

comes from differences in the land or ocean uptakes.
The models show a large range of future carbon up-

take, both for the land and for the ocean (Figs. 4a and
4b). However, for the ocean, 10 out of the 11 models
have a cumulative oceanic uptake ranging between 412
and 649PgC by 2100, the exception being INM-CM4.0
with an oceanic uptake of 861PgC. As discussed in the
historical section, the reasons for this large simulated
uptake are unknown. The simulated land carbon fluxes
show a much larger range, from a cumulative source of
165PgC to a cumulative sink of 758PgC. Eight models
simulate that the land acts as a carbon sink over the full
period. Land is simulated to be a carbon source by two
models, CESM1-BGC and NorESM1-ME, both sharing
the same land carbon cycle model, and byMIROC-ESM.

FIG. 4. Range of (a) cumulative global air to ocean carbon flux (PgC), (b) cumulative global air to land carbon flux
(PgC) from the 11ESMsE-driven simulations, (c) the annual global air to ocean carbon flux, and (d) annual global air
to land carbon flux. Color code for model types is as in Fig. 1.
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ESMs not designed to integrate satellite data for quantifying in 
a statistically robust manner these various C cycle reservoirs, 
fluxes, and processes

Opportunity: A constellation of satellites now exist to quantify terrestrial carbon, water & energy fluxes and processes

TRMM, GPM, 
CloudSat



Caltech’s Climate Modelling Alliance (CliMA) Earth System Model (ESM) Provides the Earth 
System Modeling and Data Assimilation Framework To Address our Science Objectives

A Next Generation ESM For Predicting Climate

• Systems design (as opposed to organic) using 
latest software design techniques and modern  
programming language (JULIA)

• Designed to use satellite data to quantify 
climate-sensitive processes (e.g. water and 
carbon cycles) in a statistically robust manner

JPL role in CliMA effort
(1) Will (a) provide land biosphere model (b) 

support implementation of land biosphere + 
biophysics in CliMA framework.

(2) Will get access to unprecedented data-
informed ESM capability (support science & 
programmatic objectives).



JPL-CliMA land model: JPL & Caltech implementations
CliMA ESM capability

1. Caltech online capability: use land model to simulate 
future of Earth System

2. JPL offline capability: use land model with atmospheric re-
analysis to ingest satellite POR into science and OSSE 
analyses (Emulation capability pushed to year 3).

Standalone capability 
Relevant to JPL science & 
programmatics
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mates improve on forest carbon stock estimates reported pre-
viously (8, 13–15, 17, 18, 25) by providing a traceable and sys-
tematic approach to geographically locate the stock estimates for
further monitoring and verification. The forest definitions chosen
here using tree cover thresholds can readily change the estimates
of total carbon and area-weighted carbon densities at national
and regional scales.

Uncertainty Analysis. We assess the accuracy of the biomass car-
bon estimates by calculating the error as the difference between
the true mean biomass value (bootstrapped samples of ground
and Lidar-estimated AGB) and the predicted biomass value
(mapped at 1-km grid cell resolution) and propagating these
errors through the spatial modeling process (SI Materials and
Methods). Errors in the distribution of forest aboveground bio-
mass can be random or systematic in nature and can include the
following: (i) observation errors associated with the uncertainty in
estimates of Lorey’s height from GLAS Lidar, errors associated
with estimating AGB derived from GLAS Lidar height, and
errors in estimating BGB from AGB (27); (ii) sampling errors
associated with the spatial variability of AGB within a 1-km pixel
and the representativeness and size of inventory plots and GLAS
pixels over the landscape (29); and (iii) prediction errors associ-
ated with spatial analysis and mapping of AGB from significant

contributions from satellite imagery (Fig. S3) (14, 30). We
combined these three types of errors (SI Materials and Methods)
to quantify the uncertainty of total biomass carbon stock as the
95% bootstrapped confidence interval at the 1-km pixel level
(Fig. 3B). The overall uncertainty in mapping AGB at the pixel
scale averaged over all continental regions is estimated at ±30%,
but it is not uniform across regions or AGB ranges (±6% to
±53%) and depends on regional variations of forests, quality of
remote sensing imagery, and sampling size and distribution of
available ground and GLAS data. However, when averaged over
all AGB ranges, regional uncertainties were comparable: ±27%
over Latin America, ±32% over Africa, and ±33% over Asia
(Fig. S4). The uncertainty in total carbon stock at the pixel scale
averaged ±38% over all three continents after errors associated
with BGB estimation were included in the analysis.

We computed the uncertainty around carbon estimates at
national and regional scales by propagating errors associated
with observation, including the errors associated with BGB
estimates, sampling, and prediction. The uncertainty of carbon
stock estimates at the national level was calculated as the square
root of the sum of per-pixel errors for all pixels within the na-
tional boundary. This process reduced the relative errors as
sample area increased. The national estimates were found to be
constrained to within ±1% of the total carbon stock obtained

Fig. 3. Benchmark map of carbon stock and uncertainty. (A) Forest carbon stock defined as 50% of AGB + BGB is mapped at 1-km pixel resolution and
colored on the basis of a 12–25 Mg C ha−1 range to show the spatial patterns. (B) The uncertainty of the benchmark map is estimated using error propagation
through a spatial modeling approach. The uncertainty is given in terms of plus or minus percent and it includes all errors associated with prediction from
spatial modeling, estimation of Lorey’s height from GLAS, estimation of AGB from Lorey’s height, errors from pixel level variations, and errors associated with
BGB estimation (SI Materials and Methods).
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JPL-CliMA land model design JPL
Caltech
Joint effort
Other
Dependencies

Land model task 
implementation
• Joint effort on algorithm. 
• JPL = implementation and 

testing
• Caltech = CliMA integration 

Based on JPL 
heritage code 
(CARDAMOM)

SRTD focus: collaborative design 
in partneship with CliMA

Existing CliMA ESM components 
(funded separately)



Highlight of Progress (2): vegetation biophysics

Braghiere et al., in prep.

• Plant biophysics 
(photosynthesis, leaf area, 
vegetation water content) and 
their response to climate are 
critical for ES prediction. 

• Tailoring model development 
to observations at hand: allows 
for accurate estimation of plant 
biophysical states and fluxes 
using existing  (MODIS, 
TROPOMI) and upcoming 
missions (SBG).

CLM: 2 bands
MODIS: 7 bands
SBG: 100s bands
CLiMA: 100s bands
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Progress highlight 1: Vegetation Biophysics in CliMA-Land



Progress highlight 2: GRACE-informed reduced complexity 
soil H2O prototype 

Massoud et al., in prep.
• Assimilation of GRACE data into reduced complexity land model
• Assimilation leads to 
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