

Virtual Research Presentation Conference

All-Digital Ground Penetrating Radar

Principal Investigator: Adrian Tang 386H Co-Is: Yonggyu Gim, Emmanuel Decrossas, Goutam Chattopadhyay, M-C Chang Program: Topic

RP-137

Tutorial Introduction

GPR is a powerful tool for sub-surface exploration:

- Explore sub-surface features of planetary bodies including ice deposits on Mars and the icy shell of outer planet moons like Europa.
- Also useful for lunar prospecting to find resources in support of human exploration missions.
- Emerging need for a compact and versatile GPR instrument for these applications.

RimFax Radar on M2020

Problem Description

GPR Typically based on microwave circuits

- Frequencies and bandwidths are fixed-tuned and must be committed to prior to launch.
- Makes the resolution, bandwidth and penetration of the radar unable to adapt to any unexpected subsurface conditions.
- Filters re related to both up/down conversation stages, and anti-aliasing filters on the data-converters.

Typical Radar Block Diagram

Methodology – Block Diagram

Reimagine Radar From Scratch

- An all-digital implementation of a radar system which works on digital codes instead of pulses or chirps.
- No A/D or D/A converter, no LO, and no up/down conversion stages, entirely digital circuitry.
- Frequency and bandwidth are 100% in-situ programmable. Covers 0-4 GHz with a single chip..

Methodology – Transmit and Receive Scheme

Methodology – Transmit Circuitry

Key Circuit Features

- Clocking PLL based on a ring VCO with feed-forward stage interpolation to keep phase noise down.
- Direct ASK modulator from the digital sequence generator into the amplifier stage.
- The amp is broadband and resistively loaded (not LC like an RFIC) to allow broad bandwidth.

Methodology – Transmit Circuitry

Key Circuit Features

- The front-end amps are again broadband and resistively loaded to allow broad bandwidth.
- Push-push envelope detector to demodulate the OOK DS/SS code
- Resistive 4 quadrant multiplier to perform code correlation. DS/SS generator is a duplicate unit of the one in the TX (So the code sequence is the same).

Research Presentation Conference 2020

Results

 Lab testing of the chip done completed just before the covid shutdown (Mar 15). This is with a cable test.

Research Presentation Conference 2020

Results

Publications and References

Very Recent Submissions (delays in testing data)

1. Rulin Huang et.al "A 0.1-4.0 GHz and 46mW Inductor-less DS/SS Ground Penetrating Radar with Programmable Carrier Frequency and Bandwidth for Planetary Exploration in 28nm CMOS" – submitted ISSCC 2021