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Abstract

The incumbent technology for dielectric channels for Hall effect electric propulsion systems is a boron nitride-based 
material which has shown increasing variability and poor properties over recent years and cannot physically scale in size to 
support the next generation of thrusters. The work contained herein is focused on the development of an advanced 
approach to create a dielectric layer on graphite using a multi-step carbothermal reduction process, which results in an 
integrally bonded layer offering controlled placement of the dielectric, with the processing and scaling advantages of 
graphite.

Tutorial Introduction



Problem Description

Electric Propulsion System

• Hexagonal boron nitride (h-BN) is widely used for its insulating properties, e.g. 
thrusters in electric propulsion systems.

Oshima et al. “Ultra-thin epitaxial films of graphite and hexagonal boron nitride on solid surfaces”, J. of Phys.: Condensed Matter (1998)

• Hexagonal structure 
(a = 2.46 Å, c = 6.74 Å)

• Dielectric 
• Resistant to oxidation up to 

1000 °C 
• Susceptible to damage

h-BN

Hofer et al. “The H9 Magnetically Shielded Hall Thruster”, Presented at the 35th International Electric Propulsion Conference (2017)



Problem Description

• Proposed solution: h-BN/Graphite bimaterial system

• Hexagonal structure 
(a = 2.46 Å, c = 6.74 Å)

• Dielectric 
• Resistant to oxidation up to 

1000 °C 
• Susceptible to damage

h-BN
• Hexagonal structure

(a = 2.50 Å, c = 6.67 Å)
• Conductive
• More compliant than h-BN 
• Poor resistance to oxidation at 

high temperatures
• Similar coefficient of thermal 

expansion as h-BN

Graphite

Oshima et al. “Ultra-thin epitaxial films of graphite and hexagonal boron nitride on solid surfaces”, J. of Phys.: Condensed Matter (1998)
Hofer et al. “The H9 Magnetically Shielded Hall Thruster”, Presented at the 35th International Electric Propulsion Conference (2017)

h-BN

Graphite 



Methodology – BN/Graphite Bimaterial
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• Carbothermal Reduction Reaction: Boric acid is reduced into BN in the presence of C.

• Amide Reaction: Boric acid reacts with urea forming turbostratic BN that can densify 
into h-BN.

B

HO

+ CO(NH2)2 t-BN

OH

OH
950 °C +

CO

N2

1500 °C

NH3

Graphite bodies



Results – Unanticipated Reactions

High temperature reactions with B2O3 can be problematic…
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B2O3 + Alumina Tube Aluminum borate
10 μm

2 μm

Aluminum borate whiskers

Alternative set-up was developed this FY using: 
i) Lower concentrations of boric acid 
ii) SiC tube
iii) BN crucibles with lids

SiC tube 
(max. working T = 1500 °C)

tBN 150 μm

t =240 ± 30 μm

Graphite BN
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Hybrid approach for developing BN/C layers
i) Carbothermic reaction replaces graphite with layer of h-BN
ii) Boron carbide layer located at the interface
iii) Turbostratic BN formed by amide reaction can help with 

the densification of the BN layer at lower temperatures 

Hubacek et al., “Preparations and Properties of a Compound in the B-C-N 
System”, J. Solid State Chem., 114 (1995)

Results – Alternative Synthesis of BN/Graphite Bimaterial

Alkoy et al., “Crystallization Behavior and Characterization of Turbostratic 
Boron Nitride”, J. Eur. Ceram. Soc., 17 (1997)



• Performance of the magnetically-shielded H9 with graphite 
walls was measured in JPL’s Owens Vacuum Chamber

• 800 V operation demonstrated for the first-time, a 267% 
increase from previous JPL work at 300 V

• Zero issues with electrical isolation

• Average thrust efficiency of carbon within -1.6% of BN

• In FY21, this performance baseline will be compared with C-BN 
channels.

• Design concepts and plasma simulations were also developed 
for use in FY21 where the C-BN channel will be fabricated.

Results – Carbon-wall Hall Thruster

JPL’s H9 with 
graphite walls 
operating at 
800 V, 9 kW



Next Steps

• Dimensional analysis: precise tracking of volume 
change after BN-forming reaction. Aim to control 
thickness of BN layer by using tailored amounts of 
boric acid-based precursor for any graphite sample

• Resistivity measurements: use source measure unit 
(SMU) or electrometer to measure resistance of h-BN 
coatings and detect current leakage

• Graphite candidates: compare different grades of 
graphite to find the best candidate for EP Hall thrusters 
e.g. G540 (Tokai Carbon); DFP-1, AXF-5Q, ZXF-5Q 
(Entegris, POCO Graphite)

Before Coating After Coating

Graphite Graphite - BN

BN - Graphite - BN
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