

Accessing Mars' Climate Record through Deep-Subsurface Pulsed Plasma Discharge Drilling

Dr. Fernando Mier-Hicks (PI 347) Gareth Merion-Griffith (former PI 152) Vlada Stamenkovic (Science Co-I 322) Dan Goebel (Co-I 353) David Staack – Texas A&M University Guglielmo Daddi (Intern Politecnico Di Torino) RTD Topical FY20 RPC-264

Jet Propulsion Laboratory California Institute of Technology

Abstract

000

Progress on the characterization of plasma discharges as an aid to more efficient subglacial access. Plasma discharges reduce ice thermal conductivity resulting in higher penetration efficiency for a thermal probe. Results on theoretical models and experimental validation are presented.

"Artist's Concept" ** DRS AUTHORIZED TO APPROVE REVISED DOCUMENT INCORPORATING REQUESTED EDITS **

Sub-glacial environments in the solar system

Mars' Poles

Europa

Enceladus

Melt probe theory

Melt probe – improvements

Planetary probes combine different penetration techniques to address melt probe limitations.

Thermal + Water Jetting

Thermal + Mechanical

Plasma drilling

- Deep drilling technology. Used to create boreholes in rock.
- Dielectric breakdown and energy deposition in a material leads to an overpressure event which fractures the surrounding material.
- The technological solutions investigated on Earth for plasma drilling are ill-suited for planetary exploration
 - High power consumption
 - Use of a drilling fluid (incompressible) that serves as a medium through which the shock wave can move.
- Possibly a thermal probe performance enhancer?

[Timoshkin, et al 2004]

Electrical schematic

In-ice discharges

- Unconstrained ice
 - Excavation
 - Chipping

Sediment removal Melting less ice

- Constrained ice
 - Cracking

Thermal conductivity reduction Fewer conductive losses

Model

- FEA Simulation pipeline courtesy of PRIME, written in MATLAB.
- Cracked ice mimicked as a thermal conductivity scaling factor k(r), with sigmoid shape.
- Parameters:
 - $K^* \rightarrow T/C$ reduction factor (k/k_{ref})
 - $R^* \rightarrow$ cracked region extent (R_{crck}/R)
 - $m \rightarrow$ transition region extent
- 0 < k(r) < 1

October 2, 2020

$$k(r) = K^* - (1 - K^*) \frac{e^{m(r - R_{crack})}}{e^{m(r - R_{crack})} + R_{crack}}$$

Z (Axis of axial symmetry)		
Cracked ice	×	Uncracked Ice , Computational domain
		Transition region
R _{cracked}		k(r)
↑		
v _{ice}		

Results

- Simple tool that allows to estimate power savings, provided that K* and R* are known.
- P_{crack}/P_{ref} exhibits little sensitivity to variations in:
 - Temperature
 - Velocity
 - Probe geometry
- The tool allows to optimize the power output in multi sidewall heater probes.

Thermal conductivity readings

Measure with COTS instrument

• 3 main cracked regions

Results

- Shown region dependent thermal conductivity reduction (up to 25% in some experiments)
- ~10% power saving according to thermal model (depends on R^*)
- Experiments not fully concluded due to SARS-CoV-2
 - Incomplete data from pulverized region (only two experiments)
 - *R** was not investigated
 - *E*, *V* dependence not investigated

Many-gaps

Internal arcing mitigation

- Screw angling increases distance between connector and decreases distance between desired arc-path
- Potting the space between connectors with high-temp Silicone insulation (very high breakdown voltage > 25 kV/ mm)
- Rest of module is potted with thermally conductive epoxy to facilitate thermal transfer

October 2, 2020

Publications

-Guglielmo Daddi, "Thermal probe enhanced with pulsed plasma discharges for efficient ice penetration," submitted to *Politecnico Di Torino as a Master Thesis. May 2020*

-Submission to ICARUS journal, in progress.

