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Abstract

In this task, we aim to develop a distributed and real-time motion planning algorithmic framework and software for multi-
agent dynamical systems that can scale up to more than hundreds of agents. Motion planning and trajectory optimization
are central to future NASA missions involving swarms of autonomous space vehicles. In response, we seek to
fundamentally advance the existing practices for swarm motion planning, which lack scalability and are not compatible with
highly distributed computational platforms. To this end, we take a hybrid machine learning and optimization theoretical
approach with two objectives in mind: i) Tackling the inherent computational complexity of motion planning, the so-called
NP-hardness, to reduce trajectory optimization computation time for large swarm by orders-of-magnitude, and ii) Enabling
distributed decision-making by swarms of agents with very limited computational capability. Specifically, we use advances
and techniques in artificial intelligence, convex optimization, and distributed control to build a swarm motion planner that
can be tailored to JPL’s future space exploration problems.
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Globally Optimal Swarm Coordination

Possible connection :
1o alava tube !

Example of F ptimal Trajectories for Reconfigurati
CubeSat Swarm in Extremely Clustered Environment

Multiple PUFFERs in Exploration

of

o)
Problem Statement:

How to plan motion trajectories of large fleet of space
vehicles that is globally optimal w.r.t. mission objectives
with requirement that it must be computed

1) on-board, 2) real-time, and 3) highly scalable

Innovation over SoA:

Poor Highly Scalable Applicability to large swarm
Scalability missions
Offline Online/Real-time  Robustness to uncertainty

Centralized Distributed Enable on-board computation
Importance to JPL:

Enable swarm missions that cannot rely on the ground-
in-the-loop guidance to continuously adjust trajectories
on its own, to guarantee mission success and be robust

to uncertainties that cannot be pre-determined
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Technical Approach

Synergistic integration of recent advances in Optimization and Machine Learning
To achieve required scalability and computational efficiency for real-time on-board swarm motion planning

FY20 Swarm Motion Planning Formulation
Cast into large scale optimization problem
Thrust 1 \L ‘L Thrust 2
Develop Optimization Module Build and Train Deep Neural Net

Leverage multi-stage approachto 2| Design DNN that acts as mentee and
efficiently find near-globally optimal |¢——| train using optimization module to

solution achieve intermediate level
FY21 Integrate Optimization Module and DNN Planner

Achieve orders of magnitude improvement on scalability to
enable real-time motion plan for swarm of space vehicle

v

Demonstrate Capability and Adaptability of the Integrated Planner
to Future JPL Swarm Missions
Adapt Integrated Swarm Motion Planner to Earth Observation Mission (3D Cloud Tomography)
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Technical Approach |

Synergistic integration of recent advances in Optimization and Machine Learning
To achieve required scalability and computational efficiency for real-time on-board swarm motion planning

FY20 Swarm Motion Planning Formulation
Cast into large scale optimization problem
Thrust 1 ! v Thrust 2
Develop Optimization Module Build and Train Deep Neural Net
Leverage multi-stage approach to Design DNN that acts as mentee and
efficiently find near-globally optimal train using optimization module to
solution achieve intermediate level

Key Technical Questions
1. Can we advance the SoA in multi-agent planning via optimization? (RA-L)
2. Can we replicate optimal solutions via training neural net? (ASCEND 2020)

3. Can we make synergetic integration of optimization and NN-based planner
to tackle the curse of dimensionality of multi-agent planning? (SciTech 2021)
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Technical Approach — Optimization

Thrust (1) Massively Scalable and Distributed Optimization for Motion Planning

Aims orders-of-magnitude scalability improvements with global optimality guarantee by tackling inherent
non-convexity via novel Parabolic Relaxation combined with Feasibility Enforcement and Numerical Search

High-Level Approach
1. Formulate multi-agent motion planning into large-scale QCQP problem (original problem)
2. Lift original problem into higher dimensional space to linearize objective ftn & collision avoidance constr

3. Convexify lifted formulation via computationally efficient parabolic relaxation

4. Enforce feasibility of solution via penalty and further computational efficiency through numerical search

Convex Relaxation:

Feasibility Enforcement:

Numerical Search:

Existing Methods:
SDP, SOCP, Lasserre

Convex relaxations
are not always exact

& Sequential convex 1
programming
Proposed Method: )
¥ A penalty is added
Computationally to the objective to
demanding for large find a feasible and
¢ problems ) &near-oplimal polnt.J
¥
(" Proposed )
Ourl M“'::d /" NN Warm-start: In
u; v :‘ P bo'lw case of failure, the
o :el xatt": < outcome of convex
e IO ) relaxation can
always be used as
General non-convex a starting point for
QCQPs are relaxed training neural
|__toconvex QCQPs | & nets. J

i Existing off-the- )
shelf solvers have
scalability limits

$
/ oronosed Method:

Proposed Method:
Our numerical
algorithm is
compatible with
both CPU and
GPU, and it can
solve relaxed
problems orders-
of-magnitude
faster than some
of commercial
solvers such as

MOSEK.

Figure 1. Proposed Optimization-theoretical Approach

Target Curve

§| Origin r
A)

Target Curve

Conve
objec
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Figure 2. (A) Inherent complexity of motion planning due to non-convexity
(B) Convex relaxation and feasibility enforcement to tackle the complexity
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Technical Approach — Optimization

Simulation Results (CubeSat with 3-axis Thrusters in Deep Space)

* 1U CubeSats (with 3-axis thrusters) are placed randomly inside 10x10x10 arena
» Each CubeSat must simultaneously travel to its assigned goal position (randomly created

» Optimal trajectories that minimizes total delta-V expenditure while ensuring collision
avoidance among agents and dynamic feasibility must be computed

1d & Value Fleld « value
X100 dauble g

b it b2

Blue: Initial State,Grpen,GoaI Position
10 CubeSats: f*=32.45, computation time=6.21s | 50 CubeSats: f*=280.48, computation time=44.86s

SoA methods cannot solve this p‘roblem instance
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Technical Approach — Optimization

Our optimization approach (overcomes limitations of SoA)

» Does not rely on local approximation of the problem

* Convergence does not requires having good initial seed and is fast

» Guarantees global optimality and finite step convergence to feasibility

« Can handle arbitrary objective, constraints that can be expressed quadratically

Fi Id
3 suble = u
6. ZlfJE‘
32,4476
51

4 ‘1 8600
280.4788
8.8918e-12

Solved’

Blue: In|t|al State ‘Green: Goal Posmon

10 CubeSats: *=32.45, computation time=6.21s | 50 CubeSats: f*=280. 48 computatlon time=44. 86s|

SoA methods cannot solve this problem instance
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Technical Approach — Optimization

We are working to further extend our approach to reduce computation time by

» Enabling distributed computation among agents (of centralized policy) through ADMM
Utilizing potential GPUs in base station (e.g. mothership) through massive parallelization

However, optimization eventually suffers from the curse of dimensionality that is inherent in
the multi-agent trajectory planning problem -> we seek to leverage advances in ML

Fleld «

Blue: Initial State, Green: Goal Position

10 CubeSats: *=32.45, computation time=6.21s | 50 CubeSats: f*=280.48, computation time=44.865|

v
We want to further reduce this computation time by 1/10 -
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Technical Approach

Synergistic integration of recent advances in Optimization and Machine Learning
To achieve required scalability and computational efficiency for real-time on-board swarm motion planning

FY20 Swarm Motion Planning Formulation
Cast into large scale optimization problem
Thrust 1 v Y Thrust 2
Develop Optimization Module Build and Train Deep Neural Net
Leverage multi-stage approachto ™| Design DNN that acts as mentee and
efficiently find near-globally optimal ¢ train using optimization module to
solution achieve intermediate level

Key Technical Questions
1. Can we advance the SoA in multi-agent planning via optimization? (RA-L)
2. Can we replicate optimal solutions via training neural net? (ASCEND 2020)

3. Can we make synergetic integration of optimization and NN-based planner
to tackle the curse of dimensionality of multi-agent planning? (SciTech 2021)
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Technical Approach — Machine Learning

Thrust (2) Intelligent Initialization and Optimization-free Planning via Deep Learning

a) provides high-quality initial seed for optimization solver to significantly reduce the convergence time
b) optimization-free planner that can provide instant solutions via a Deep Neural Network (DNN).

Early-stage planner:

Intermediate planner:

Un-trained DNN:
Passively learns

Convex Optimization: |
Offers rapid decisions using I
__warm- -start from DNN

11

| Moderately-tramed DNN: I

Offers initial seed only |

_-—_-—_J

Mature planner:

FUNSEEEEEEEEEEEEEEEEEEEEEEEEEEEER -

Convex Optimization: :
: Only handles exceptional :

cases and outliers
IIIIIIIIIIIIIIIIIIIIIII EUTTEEEEEEY

Figure 3. The Mentor/Mentee relationship between the optimization and Al technologies to be developed.
Matured DNN will provide instantaneous computation-free plan for the vast majority of cases while

Reliable but slower and more expensive optimization module handles exceptional cases for robustness

Ji-
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Technical Approach — Machine Learning

Current Neural Network Architecture (Feed-Forward NN)

N layers
INPUT OUTPUT
Initial State Trajectory that
(position, consists of
velocity, intermediate states
acceleration) (1100 RelLu Dropout ||, — || 100 ReLu Dropout ||, (nhosition, velocity,
+ ense 0.2 e dense 0.2 .
acceleration) at
Final _State each time-step
(position, connecting from
velocity) initial to goal state

Hyperparameter tuning is used to determine the number layer and nodes that
are optimal for a physical system under consideration
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Technical Approach — Machine Learning
Physical System — 2D Double Integrator, Single Agent + Single Obstacle (5k dataset)

Ground Truth NN Generated
Veloci Veloci
1.5 ty 1.5 ty
1 _ o0 Star 1 o o®
0.5 %% @Obstacle 0.5 f Q
0 ﬁ Goal 0

05 0 05 1 15 -05 0 05 1 1.5

Ground Truth NN Generated
Acceleration Acceleration
1 0 9% 1 o 5¥%
0.5 @,ef*@ 0.5 po O
0 § 0 s

‘05 0 05 1 15 -05 0 05 1 1.5

Our preliminary results show
accurate position and velocity
estimation (RMSE = 0.0129 + 0.0088)
using a deep learning based
numerical model, given the simplest
single agent and single obstacle.
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Technical Approach — Machine Learning
Physical System — 2D Double Integrator, 10 Agent (30k dataset)

Ground Truth NN Generated
Trajectory Trajectory ‘
‘ ‘ ‘ ‘ ‘ ‘ 35" *
1 1 i
3r +
0.8 O O ] 0.8 O O E
06| O O ] 06! O O | 25 | 4
0.4; O © 1 0.4; O © 1 2 3
| O O | O O —
02/ O O — 02/ O O — 15
o 1 0 1 1 i
6 012 014 0:6 0.8 1 O 012 014 0:6 0.8 1 GT i:uel NN i:uel

NN was trained on the 10 agents neural net model using 30k dataset.

Fuel consumption of NN model was comparable to that of the ground truth (optimal sol)

* NN generated trajectories still showed some collisions but quantum jumps are nearly resolved
(compared to 1k dataset)

Trained NN takes only 0.5ms to generate solution (compared to ~5s via optimization)
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Technical Approach — Machine Learning
Physical System — 2D Double Integrator, 10 Agent (30k dataset)

Instantaneous, compute time < 0.001s

Global Optimal Solution, f*__ = 2.2545 ML Solution, f*,, =2.2916

* NN was trained on the 10 agents neural net model using 30k dataset.

* Fuel consumption of NN model was comparable to that of the ground truth (optimal sol)

* NN generated trajectories still showed some collisions but quantum jumps are nearly resolved
(compared to 1k dataset)

* Trained NN takes only 0.5ms to generate solution (compared to ~5s via optimization)
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Summary

SOA Comparison

Multi-Agent mRRT* MILP SCP Parabolic
Planning SoA
Methodology = Sampling Velocity Optimizat Optimizati | Optimizati

-based  Obstacle ion on on
based

Scalability A v X A A
Optimality A X v A v
Dynamical X X A v v
Feasibility
Computational A v X A A
Efficiency

Key Technical Questions
1. Can we advance the SoA in multi-agent planning via optimization? (RA-L)
2. Can we replicate optimal solutions via training neural net? (ASCEND 2020)

3. Can we make synergetic integration of optimization and NN-based planner
to tackle the curse of dimensionality of multi-agent planning? (SciTech 2021y,
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Summary
SOA Comparison

Multi-Agent mRRT* MILP Parabolic
Planning SoA

Methodology = Sampling Velocity Optimizat Optimizati Optimizati | Machine

-based Obstacle ion on on Learning
based

Scalability A v X A A v

Optimality A X v A v A

Dynamical X X A v v A

Feasibility

Computational A v X A A v

Efficiency

Key Technical Questions
1. Can we advance the SoA in multi-agent planning via optimization? (RA-L)
2. Can we replicate optimal solutions via training neural net? (ASCEND 2020)

3. Can we make synergetic integration of optimization and NN-based planner
to tackle the curse of dimensionality of multi-agent planning? (SciTech 2021},




Research Presentation Conference 2020

Summary

SOA Comparison

Multi-Agent mRRT* MILP Parabolic DNN Integrated
Planning SoA Approach
Methodology = Sampling Velocity Optimizat Optimizati | Optimizati | Machine Opt + ML

-based  Obstacle ion on on Learning
based

Scalability A v X A A v v
Optimality A X v A v A v
Dynamical X X A v v A v
Feasibility
Computational A v X A A v v
Efficiency

Key Technical Questions
1. Can we advance the SoA in multi-agent planning via optimization? (RA-L)
2. Can we replicate optimal solutions via training neural net? (ASCEND 2020)

3. Can we make synergetic integration of optimization and NN-based planner
to tackle the curse of dimensionality of multi-agent planning? (SciTech 20214,
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