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Experienced human driver ENav Algorithm





• Two heuristics developed in FY20
• Human-designed heuristic, designed by 

domain experts
• Machine-learned heuristic, 

automatically learned from numerous 
runs of ENav in simulation

• Heuristics guide path planner 
towards promising direction 

• Reduce the number of 
computationally expensive collision 
checking (ACE)

Heuristics for ENav Path Planning Promising
Bad





Given a terrain heightmap around a rover, the gradient 
convolution heuristic is calculated as follows:

1) Convolve the heightmap with normalized 3x3 Sobel 
operators to find the x and y gradient

2) Find the squared gradient as the element-wise 
multiplication of the x and y gradient:

3) Convolve the gradient map with an annulus-shaped 
kernel representing the footprint of the rover:

Gradient Convolution Heuristic

Work by Neil Abcouwer and Tyler Del Sesto 



Gradient Convolution Heuristic –
Monte Carlo Simulation Results

Tests with the Gradient Convolution Heuristic integrated into 
ENAV showed:
+ Reduced path inefficiency in complex terrain by up to 22%
+ Substantial reduction in the number of ACE evaluations, 

by up to 59%
- Small reduction in success rate in complex terrain
+ Heuristics have potential to increase computational 

efficiency.

Work by Neil Abcouwer and Tyler Del Sesto 



Architecture:

• Data-driven framework to automatically learn the heuristic

• Uses an encoder-decoder style Convolutional Neural
Network based on U-Net to predict the outcome of the of
ACE algorithm for a given terrain map

• Using this prediction, ENav can reduce its search space
by more optimally sorting its initial list of potential paths

• ACE Check is still done on the final selected path before
execution, ensuring classical safety guarantees.

Dataset Generation and Training:

• Training data was generated using a ROS-based ENav
simulation environment with a wide-range of terrain
properties (CFA: 7-15%, Slope: 0-20 degrees)

Machine Learned Heuristic
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Gradient Convolution Cost

Convolving a 2.5D height map (top left) with the Sobel
operator creates a gradient map (top right). Convolving the
squared gradient map with an annular kernel (bottom left)
based on the footprint of the rover and the resolution of the
height map gives a Gradient Convolution Cost (GCC) Map
(bottom right). Sampling the GCC map along the path of an
arc gives a heuristic cost of an arc.

Maneuver Tree Pruning Strategies

The baseline fixed maneuver tree is shown at the top
left. Lower-cost paths are red. To plan further, the set
of considered maneuvers must be pruned down.
Naïve approaches like pruning a fixed percentage
(top center) or pruning all but one child node (top
right) may neglect portions of the space and create
redundant analysis. Pruning the tree by taking the
best path within given polar angle ranges (bottom)
gives greater coverage with less overlap. How these
trees grow over pruning steps is shown from left to
right.

The key limitation of the fixed-tree approach is that only a small
set of paths can be assessed via the ACE algorithm due to the
computational cost and as the rover plans further out, the
number of possible paths increases exponentially. To prune the
maneuver tree, a heuristic for quickly assessing traversability
was developed: Gradient Convolution Cost (GCC). GCC can
be used to prune and further grow the maneuver tree,
extending the planning horizon.

Project Objective

The objective of this research is to enable surface
mobility in more complex terrains at higher traverse
rates than the current state of practice, such as the
level of algorithms baselined for the Mars 2020
rover.

Robotic mobility is essential for gathering in-situ
science data from various locations. The Mars 2020
mission has stringent traverse rate requirements,
and future missions will be even more demanding.
To enable a faster traverse rate, planning algorithms
must consider perception information and assess
terrain traversability across a continuous space of
feasible paths, all with limited computation.

The current state of practice for onboard planning is
to use a fixed tree of candidate arcs and turns, a
branching set of hundreds of paths. The basic cost
of each path is computed, including the actuation
time and the distance between the path end point
and the final goal. Only the most promising paths
are then checked for feasibility with the Approximate
Clearance Evaluation (ACE) algorithm, which is
computationally expensive.

In this task we explore two techniques to improve
upon the fixed tree approach: Least Recently Used
Path Caching, and Gradient Convolution Path
Pruning.

Benefits to NASA and JPL

The LRU-based path caching technique has shown
good promise in the standalone simulation in terms
of mean deviation from the straight-line path and
the number of cache misses accrued during the
planning process. This implies that in most cases,
the software can evaluate fewer paths, which
directly translates to a reduction in computational
budget. The efficiency of this approach is directly
dependent on the design of the underlying path set.

Gradient Convolution Cost allows terrain-based
costs to be estimated quickly, allowing pruning
techniques to extend the planning horizon of the
rover, leading to more optimal paths and quicker
traversal rates. GCC’s integration into the two-arc
strategy also enables improved planning to specific
goal poses.

The techniques could lead to reduced mission risk,
both in terms of meeting traverse requirements and
avoiding rover threats.

Gradient Convolution Path Pruning

Least Recently Used Path Caching

Two-Arc Path Costing

A rover can move to a goal position and heading in a
minimum of two arcs. There are an infinite number of
arc pairs can achieve the task. When a representative
set of arcs pairs is generated, the GCC can be
sampled for each pair (left) and the optimal pairs for
various targets can be explored (right).

The rover starts on the top left (cyan circle) and proceeds
towards the goal in bottom right (pink circle). The shortest
path is denoted by the dotted line and it goes over obstacles
(blue hexagons). The obstacle free path computed using
the LRU Strategy is in Green and it mostly overlaps with the
path generated by exhaustive search.

The LRU algorithm maintains a “cache” of paths (which is
much smaller than the mother set) and is initialized either at
random or by a strategy that maximizes path diversity. In each
planning cycle, the algorithm searches this cache for a
feasible path. A cache “miss” event is encountered when a
feasible path is NOT found. In this case, the algorithm
(exhaustively) searches the mother set for a feasible path. If
one is found, the cache entry whose element is the least
recently used is replaced by the feasible path.
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Simulation Experimental Setup
� 10 CFA ,100 random terrains per CFA – 1000 terrains
� Cost map layers (no effort to weight the layers)

� Terrain height, proximity to obstacles, cost to go

M2020 Monte Carlo simulation
� 4 CFA (7%, 10%, 12%, 15%), 5 slopes (0,5,10,15,20 

degrees), 4 LRU path budgets (50, 100, 250, 500) , 
� 50 scenarios per CFA, slope. LRU budget  

M2020 simulations indicate LRU has significant
computational time gains (~13 to 260 seconds) over the
baseline (fixed tree strategy) with a slight degradation in
performance (2% worse on ENAV requirements metric)
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Work by Shreyansh Daftry, Neil Abcouwer, Siddarth Venkatrman

ML Architecture

Dataset Generation



Machine Learned Heuristic

Tests with the Learned Heuristic integrated into ENAV showed:

• 31% Improved path efficiency in complex terrain

• 76% reduction in the number of ACE evaluations

• Learned Heuristics have potential to significantly increase computational efficiency.

Work by Shreyansh Daftry, Neil Abcouwer, Siddarth Venkatrman

Input Heightmap Ground Truth Prediction

Performance of CNN Model in Learning Heuristic: 

• Training Accuracy: 97.8%, Validation Accuracy: 95%



Overall Monte Carlo 
Simulation Results

• The learned heuristic proved broadly 
superior to the hand-designed 
Gradient Convolution Heurisitc

• Greater success rates
• Fewer ACE evaluations

• Both heuristics worth testing on 
representative hardware.
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Work by Neil Abcouwer, Shreyansh Daftry, Siddarth Venkatraman, and Tyler Del Sesto 



Hierarchical Path Planning

Long distance planning is challenging for the existing planner which 
mainly relies on local information.

We propose to utilize hierarchy in planning tasks:

1) Use global information to define sub-problems for planning in the 
form of waypoints.

2) Use the existing planner to complete plans connecting waypoints.

Preliminary experiments show a 10x reduction in planning cost when 
used with the A* algorithm if an expert places the waypoints 
manually, compared with planning with no waypoints.

Work is underway to design machine learning models for automatic 
waypoint placements from global map information.
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Work by Jialin Song



• Development and implementation of the hand-designed and machine-learned heuristics

• Integration of the heuristics with ENav FSW; evaluation with Enav Monte Carlo Sim

• Two conference paper drafts
• Machine Learning-Based Path Planning for Improved Rover Navigation. N. Abcouwer, S. Daftry, S. Venkatraman, T. del Sesto, 

R. Lanka, O. Toupet, M. Ono, J. Song, and Y. Yue. Abstract accepted to IEEE Aerospace Conference, 2021
• Learned Heuristics for Safe and Efficient Path Planning, S. Daftry, N. Abcouwer, S. Venkatraman, T. Sesto, J. Song, O. Toupet, 

M. Ingham, R. Lanka, Y. Yue, H. Ono. To be submitted to ICRA 2021

FY20 Accomplishments

FY21 Goals
• Maturation of the machine-learning-based heuristic

• Deployment on a processor that is analogous to future on-board computers (e.g, Qualcomm’s Snapdragon) 
for validation and benchmarking

• Advance the technology to TRL 4
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