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Tutorial Introduction

Optical frequency combs (OFCs) have revolutionized the field of
metrology by enabling measurement of optical frequencies with
unprecedented precision [1]. An OFC consists of a set of equidistant
mutually coherent modes, and has predominantly been generated by
mode-locked lasers.

Chip-scale electrically pumped OFCs are expected to play a fundamental role in applications ranging from
telecommunications to optical sensing. To date, however, the availability of such sources around 2 ym has been scarce. In
this work, a frequency modulated (FM) OFC operating around 2060 nm of wavelength exploiting the inherent gain nonlinearity
of single-section GaSb-based quantum well diode lasers is presented. A2 mm long device operating as a self starting comb
outputs 50 mW of optical power over more than 20 nm of bandwidth while consuming <1 W of electrical power. Using the
Shifted Wave Interference Fourier Transform Spectroscopy (SWIFTS) technique [2], the generated frequency-modulated
waveform is analyzed, a linearly chirped intermodal phase relationship among the entire emission optical bandwidth is
demonstrated. Furthermore, by compensating for the linear chirp, 6 ps-long optical pulses are generated. The frequency
stability of the devices with 19.3 GHz repetition rates allows us to perform mode-resolved free-running dual-comb
spectroscopy.
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Problem Description

a)

b)

The 2 um region is of large interest for the next-generation telecommunication systems, eye-safe light detection, and
molecular spectroscopy, in particular for monitoring global emissions of carbon dioxide.

2 um combs can enable spectrally-efficient orthogonal-frequency division multiplexing (OFDM) in optical interconnects to be implemented in a new
spectral window.

In sensing applications they would allow measurement of broadband and high-resolution spectra on extremely short time scales using the dual-comb
technique.

State-of-the-art

Our frequency modulated (FM) combs generate more than 10 times more power than state-of-the-art passively mode-locked counterparts at the same
spectral window

Our FM combs has narrower 10-100 times narrower linewidth than the passively-mode-locked counterparts which suits them better for free-running
spectroscopy applications
Relevance to NASA and JPL (Impact on current or future programs)

a) This makes QWDLs promising candidates for low-drive-power sensors of environmentally important molecular species like carbon dioxide or
ammonia in the 2 um region.

b) The high power per tooth yields a high average spectroscopic signal-to-noise. This permits measurement over much shorter time scales (even
microseconds), which is well suited for studying reaction kinetics. ‘
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Methodology

a) QWDL devices based on a monolithic single-section Fabry-Pérot cavity design
a) emitting a frequency-modulated THz-spanning OFC
b) 50 mW of optical power centered around 2060 nm
c) lessthan 1 W of electrical power consumption at room temperature.
d) 10 times more average optical power than the previously demonstrated mode-locked 2 um QWDL devices [3]
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Results

(a) Photo of a QWDL comb on (b) Optical spectrum (c) P-I-V characterization of the device at room
temperature (d) Electrical intermode beat note spectrum
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Combs demonstrate broad optical spectrum (> 20nm) with low intermode beat node phase noise B A )
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Results

SWIFTS interferograms (a) along with the corresponding amplitude and phase spectra.
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A characteristic minimum around the zero-path-difference (ZPD) point visible in the SWIFTs traces
confirms the FM character. Additionally, the phase difference between neighboring L | )
lines varies almost linearly from = to - & as expected for a maximally chirped comb state R
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Results

Optical phase with an arbitrary global offset obtained. (b) Calculated instantaneous intensity and
frequency based on the modal intensities and phases.

o

i) I Optical‘

©

< -10  phase o

Q GDD = -10.4 ps

2 20| P

=

& 30 ‘ ‘ ‘ ‘ ‘ S

4830 4835 4840 4845 4850 4855 4860

(@ Wavenumber (cmt)

Intensity
o
(6,]

(a.u.)

145.6

Frequency
(THz)
&
N

144.8 -
-80

(b)

14860
14850
14840
14830

60 40 -20 O 20 40 60 80 100

Time (ps)

* Alinear modal phase difference corresponds to a second order dispersion. A least-squares fit to the

parabolic phase yields a field GDD of —10.4 ps?
« A quasi-continuous wave output periodic with the repetition frequency has a strong amplitude A )
modulation component with pronounced spikes of intensity when the laser changes the direction o. | ‘

its frequency sweep.

Wavenumber

(cm1)



Research Presentation Conference 2020

Results

Chirp compensation using a dispersion-tailored single mode fiber. (a) Normal and SWIFTS IFGs of the
device operating. (b) Device in the same comb state measured GVD compensation
(a) Uncompensated (b) GDD-Compensated
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Around ZPD, the rf beat note IFG has a sharp peak indicating strong amplitude modulation.
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Results

Retrieved DCS transmission spectrum along with a low-finesse GaSb etalon fit. An independent

Free-running Dual Comb Spectroscopy using a pair of QWDLs.
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Results

a) Quantum well diode laser optical frequency combs operating in the 2 um region with more than 1 mW per comb tooth.
a) Optical frequency comb generation is using self-starting frequency modulation (FM).
b) The stability of the 19.37 GHz repetition rate is excellent lies in the near-kilohertz range over 40 ms,
c) The stability was be further improved down to a sub-hertz level using a fast optical phase locked loop (OPLL).
d) Interferometric characterization of the devices revealed a strongly-chirped waveform with a GDD on the order of -10 ps?
e) GDD was compensated externally to generate 6 ps long optical pulses limited by the high order dispersion

f) A pair of devices was used to demonstrate proof-of-concept free-running dual-comb spectroscopy of a low finesse Fabry-Pérot etalon.

b) Significance

a) We have demonstrated the feasibility of a dual frequency comb spectroscopy experiment by multiheterodyning two QWLD combs on a fast
InGaAs detector.

b) This makes QWDLs promising candidates for low-drive-power sensors of environmentally important molecular species like carbon dioxide or
ammonia in the 2 um region.

c) The high power per tooth yields a high average spectroscopic signal-to-noise. This permits measurement over much shorter time scales (even
microseconds), which is well suited for studying reaction kinetics. ‘
c) Next steps

a) Passive mode-locking of these dev ices was envisioned but were not demonstrated
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