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Abstract

In this project, we tackle the coverage planning optimization problem for large unknown 

environments. In large planetary surface/subsurface with no/little map information,

autonomous exploration for coverage, i.e., mapping of the environment and detection of 

targets of interest, is one of the key technologies for NASA’s future missions. For example, 

Lunar Surface Innovation Initiative (LSII) seeks extreme access capability for efficient 

exploration in permanently shaded surfaces or unknown subsurface voids at a large scale. 

Such autonomous exploration capability enables detection of scientific investigation targets 

and/or human habitat areas, without human operators in the loop. The challenge, however, is 

that the optimization of coverage planning for unknown environments is hard to scale up—

its complexity grows exponentially as the environment size gets larger. Thus, the state-of-

the-art coverage planners solve for myopic, suboptimal solutions for the local area around 

the robot. In this work, we developed an efficient information-based coverage planner for 

large unknown environments. The two key ideas are 1) to represent the probabilistic robot 

and world state as a compact graph representation with embedded semantics, and 2) to 

employ hierarchical planning-under-uncertainty framework to pursue local optimality and 

global completeness at the same time.
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State-of-the-art Coverage Planners

• Next-Best-View: Myopic, suboptimal solution

• Belief Space Planner: Not scalable to large problems

Computationally intractable 

to solve for exact solutions!
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è POMCP (Partially Observable Monte Carlo Planning) for this optimization problem!
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Results

• Enabled large-scale autonomous 

exploration in unknown environments

• Theoretically grounded approach

• Demonstrated simulation and (initial) 

hardware tests

• Adaptive replanning in dynamic 

environments

• Multi-robot coverage planning

• Learning-based approaches
Spot on Caltech Garden
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• Objective

• Maximize the coverage of the environment within a given time

• Approach

• Longer-horizon planning under uncertainty

• Compared to frontier-based exploration with one-step look-ahead greedy policy

• Compact environment representation

• To reduce the problem complexity (dimensionality)

• Hierarchical framework to scale to large environments

• To reduce the problem complexity (planning horizon, i.e., history)
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• Objective

• Maximize the information gain per action cost for a finite planning 
horizon, in a receding horizon control fashion (online replanning)

• Approach

• Longer-horizon planning under uncertainty

• Based on POMCP (Partially Observable Monte Carlo Planning) algorithm

• Compact environment representation

• Information Roadmap (IRM) that compactly encodes high-fidelity information

• Hierarchical framework to scale to large environments

• Cascaded global-local planners for local optimality and global completeness
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Optimal Hierarchical Policy:
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