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Abstract

Detecting exoplanets and measuring their masses is a priority
for the astrophysics. Astrometry is the only exoplanet detection
technique that can unequivocally measure exoplanet masses.
The signal of an earth-like planet around nearby stars ~ 1
micro arcsecond (µas), while current instrumentation reaches
(Hubble, GAIA) reaches 25 µas at best. The main limiting
factor, after photon noise, to measure the astrometry signal
(vector that indicates the target’s motion) are optical distortions
that arise from small deformation of the optical system. A novel
technique called Diffractive Pupil (DP) allows obtaining
distortion-calibrated astrometry vectors from the image.
Currently, we use analytical methods to extract the distortion
map from the diffractive features, however different sources of
noise limit the accuracy of the algorithm. We hypothesize that
ML could directly estimate the astrometry vector from data
containing the diffractive pupil calibration fiducials with higher
accuracy than analytical methods

Tutorial Introduction

Fig.1. Optical distortions limits astrometric measurement of a star 

w/r to background. The Hubble distortion field amplified 1e6 times is 

represented on the lower right corner



a) Context: Analytical methods to extract the distortion map from the diffractive features are limited by noise in 
the images and the complexity of the signal.

b) SOA: Currently the astrometric accuracy state-of-the-art is in the order of 25uas for Hubble using scanning 
techniques and about 30uas for the Gaia missions

We need and accuracy of ~ 1 micro arcsecond (µas) to detect earth-analogs around sun-like stars

c) Relevance to NASA and JPL (Impact on current or future programs)

Enabling high-precision astrometry on future space mission would enable measuring exoplanet masses, thus 
constraining their habitability.

Problem Description



Goal: Explore the ability of Machine Learning to learn 
the shift in astrometric signal from images that have DP 
calibration features under both noiseless and noisy 
conditions

Image Simulation: We simulated images containing a 
source with diffraction spike (represented by the lines) 
along with a consistent grid of background sources (the 
grid of dots).  Each image is than arbitrarily shifted in the 
x and y directions up to 1 pixel.  We generated 10K sets 
of the following:

• One set of noiseless images (example on right)

• Two sets of Noisy images with readout, photon and 
flat field noise

• Simulated images were 512x512 and scaled to be 16 
bit

• We also generated FFTs of the images

Methodology – Image Simulation



We selected the following ML regression methods for experimentation:

• Random Forest (RF)

• Multi-layer Perceptron (MLP)

• Deep Learning Convolutional Neural Network (DL)

This represents a spectrum of well-known, robust ML regression methods. 

Methodology – Learning Algorithms

Multi-layer Perceptron

Random Forest

Deep Learning



Methodology – Random Forest Regression

The random forest (RF) is a widely-used regression method, known for its robustness for noise and low variance 
models.  The ”forest” is comprised of individual decision tree regressors, which are binary trees that recursively 
partition the training examples from root to leaf into a prediction is made that closely matches the target.  The forest 
reports an average of individual tree predictions.  Each tree is built using a sampling of the training data in order to 
ensure diversity among the trees.  

We use the scikit-learn’ sRandom Forest regressor in Python, setting the number of trees in the forest to 100.  

Most ML classifiers and regressors typically predict a single value.  Our problem requires the ML algorithm to learn 
both x- and y-shifts.  The RF regressor natively allows for this, but we utilized the MultiOutput wrapper provided by 
scikit-learn that learned each coordinate individually and combines the result.  We tried both the native and Multi-
Output wrapper in some preliminary results and noted similar performance, and outputs to continue to use the 
Multi-Output wrapper.  Please note the deep learning methods described next use a similar type of wrapper.

We experimented with the following feature sets:

- row-wise flattened image

- col-wise flattened image

- row and column sums of the images

- row and column sums of FFT of the image (both real and imaginary parts)



Deep learning models represent a class of tools that excel at capturing complex and potentially non-linear relationships in 
data. They are considered “deep” because many consecutive layers of artificial neurons are stacked on top of each other. 
Convolutional neural networks are a large class of deep models that are a good example of this concept: In convolutional 
neural networks, early layers in the network may capture lines and edges, middle layers may use combinations of lines to 
capture shapes, and later layers can use combinations shapes to identify objects.

MLP model
The Multilayer Perceptron (MLP) model we used was a fairly simplistic deep learning model that we trained using the image 
row and column sums as input. The model consisted of several hidden layers with dense connections and exponential linear 
unit (elu) as the activation function. Specifically, we used five hidden layers of size 512, 256, 128, 64, and 32. The output layer 
was simply 2 neurons that gave the predicted X and Y offset. During model training, we used the stochastic gradient descent 
optimizer, decreased learning rate as training progressed, and used mean average error as the loss function. All work was 
carried out using the TensorFlow framework

Convolutional model
The convolutional model we tested is a relatively heavy deep learning model and was trained using the raw images as input. 
Here, we used the EfficientNetB0 model as our backbone with one 64 neuron hidden layer appended to this backbone. Again, 
the output layer consisted of 2 neurons that predicted the X and Y offset. During training, we used the stochastic gradient 
descent optimizer, decreased learning rate as training progressed, and used mean average error as the loss function. 
Because this is a much more sophisticated model, we trained on an Nvidia Tesla P4 GPU. All work was carried out using the 
TensorFlow framework.

Methodology – Deep Learning



Results on Noise-free Images

• We compare two RF 
models (with row-col sums 
on the science image, and 
row-col sums on the FFT 
image), and two deep 
models (MLP, DL), where 
MLP was trained on image 
row-col sums and DL was 
input the science image

• We experimented with 
increasing training set sizes

• As expected, model 
performance improves as 
training data increases

• Without any noise, it 
appears both RF models 
outperform the DL models



Results on Noisy Images

• Using the largest training 
set size (8000 images), we 
compare performance on 
noise-less and two sets of 
noisy images (with flat field 
(ff) and read-noise 
constants (ron) shown 
below.  Note that the right 
side results have 2x the 
noise of the center results.

• The deep methods (MLP 
and DL) seem to not be 
affected by noise, while the 
RF methods are affected.

• RF methods perform better, 
but under noise, the image 
features perform better 
than FFT features.



• Here are the x- and y-coordinate errors plotted for 
the best performing result (RF using row-col sums on 
the science image) under the highest noise.

• The RMS error of the best performing algorithm is 

RMS x = 0.00329px

RMS y = 0.00319px 

Calculated over 2000 images.

• Typical analytical centroiding for similar noise levels 
is in the order of 0.001px

• ML was able to get to the same order of magnitude 
than analytical algorithms.

Best Performing Result under Highest Noise



a) Accomplishments versus goals

Goal: 

Measure astrometry vectors to better accuracy than using geometrical centroiding on the simulated images. 

Results:

None of the machine learning  algorithms could estimate the image shifts better than the analytical approach

BUT, Deep Learning (DL) showed robustness to noise.

a) Significance

We could not train DL to optimal levels because the time needed. However, there is indication that DL can improve from its 
current status and it can be resilient to noise. 

a) Next steps

Continue this research with an Intern that is lined up with Div 39.

Results



No publications have resulted from this work yet.
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