

Virtual Research Presentation Conference

High-power Breakdown Software Evaluation

Principal Investigator: Emmanuel Decrossas (337) Co-Is: Curtis Jin (337), Yasser Hussein (337), Salman Haque (337) Program: Innovative Spontaneous Concept

Assigned Presentation # RPC-148

© 2020 California Institute of Technology. Government sponsorship acknowledged.

Abstract

High-power breakdown is phenomena where strong electromagnetic (EM) potential differences in space cause the surrounding medium to break down; such as creating swarms of free electrons, flow of charged particles, changing the visual appearance or pressure, temperature, etc.

Multipaction

Breakdown in vacuum

Electrons are accelerated by the EM field and impact the device wall.

Secondary electrons are released and grow exponentially, and discharge develops.

Research Presentation Conference 2020 **Problem Description**

Problem of High-power Breakdown :

The breakdown phenomena occur under certain conditions statistically.

So, the device will eventually experience breakdown in a long run which can result in the followings :

Loss of energy. Increase of signal reflection and noise. Generation of nonlinearities such as harmonics and intermodulation products. Progressive damage on electrical components : electrical wind pressure caused by particles impact on device wall and temperature change

Previous State of The Art : Hatch & Williams & Woo's work.

Thorough experiments showing upper & lower limit conditions on breakdown. Simple but effective mathematical model that describes the phenomena fairly well.

Limits of Previous State of The Art :

Simple geometries such as parallel plates and coaxial cables

↔ Conservative breakdown estimates

← Increased cost by component oversizing or unnecessary performance evaluation tests

Research Presentation Conference 2020 Theory and Methodology

Modern tools actually simulate the particles' physical states using physics simulators solving the governing equations and Monte-Carlo simulation \rightarrow **More accurate breakdown estimates.**

Total 6 tools that provide breakdown analysis have been identified :

Spark3D, VSIM, Comsol, Ansys HFSS, CST Particle and ESA's ECSS Multipactor tool

Research Presentation Conference 2020 **Results**

Electron Density (1/m³)

Research Presentation Conference 2020 Future Work and References

Future Work :

Simulate more general and complex geometries, and establish systematic approach to link the modern results to the previous state of the art Hatch & Williams & Woo. Also, experiment/test to validate modern tools' result.

Find mathematical explanation on upper-limits of breakdown by generalizing the mathematical model with damping effect and linking the previous theory to quantum mechanics.

Extend the study to more general signal type such as modulated signals.

References :

- A. Hatch, The Secondary Electron Resonance Mechanism of Low-Pressure High-Frequency Gas Breakdown.
- A. Hatch, Multipacting Modes of High-Frequency Gaseous Breakdown.
- R. Woo, A Similarity Principle for Multipacting Discharges.
- R. Woo, Multipacting Discharges between Coaxial Electrodes.
- R. Woo, Final Report on RF Voltage Breakdown in Coaxial Transmission Lines, JPL Technical Report.
- J. Rodney, A New Formula for Secondary Emission Yield
- Standard Handbook for Multipactor Breakdown Prevention in Spacecraft Components.
- D. Iglesias, Multipactor RF Breakdown Analysis in a Parallel-plate Waveguide Partially Filled with a Magnetized Ferrite Slab.

Update on Multipactor in Coaxial Waveguides using CST Particle Studio, Gennady Romanov, Fermilab, Batavia, IL 60510, USA, Proceedings of 2011 Particle Accelerator Conference, New York, NY, USA https://www.epfl.ch/research/domains/swiss-plasma-center/research/plasma_applications/plasma_applications_research_areas/plasma_applicatio

SEY Parameters we used are from ESA/Spark3D/CST:

Surface Type	E1 (eV); <i>W</i> _l	E2 (eV); W_u	Em (eV)	a_max
Gold	150	4000	1000	1.79
Silver	20	5000	175	2.2
Aluminum	30	5000	805	2.98
Alodine	41	5000	180	1.83
Copper	25	5000	175	2.3

 $k = 3, \phi_{ii} = -58^{\circ}, W_{fi} = 20 \text{ eV}, W_{fii} = 5000 \text{ eV}$

Multipaction Summary Table :

Tool Type	Freq.	Type (r / R)	<i>f d</i> (GHz x mm)	Emax	Breakdown Wattage (P)	Breakdown Voltage (V) $E_{max} R \sqrt{P} ln(R/r)$	Breakdown Voltage (V) $\sqrt{2ZP}$	HW-Low (V)	HW-Up (V)
Spark3D	500 MHz	Coax (1.7/5.7mm)	2	6804	177	624.24	157.42	136.16	549.65
Spark3D	250 MHz	Coax (1.8/4.2mm)	0.6	5727.81	No Breakdown	No Breakdown	No Breakdown	26.9	49.6
Spark3D	500 MHz	Coax (1.8/4.2mm)	1.2	5413	30	105.5076754	55.1983	48.9	198.2
Spark3D	750 MHz	Coax (1.8/4.2mm)	1.8	5412	97	189.6832819	99.2546	110.1	445.8
CST	250 MHz	Coax (1.8/4.2mm)	0.6	-	No Breakdown	No Breakdown	No Breakdown	26.9	49.6
CST	500 MHz	Coax (1.8/4.2mm)	1.2	5412	86	178.6045069	93.4575	48.9	198.2
CST	750 MHz	Coax (1.8/4.2mm)	1.8	4270	260	245.019105	162.4993	110.1	445.8
HFSS	250 MHz	Coax (1.8/4.2mm)	0.6	30496	No Breakdown	No Breakdown	No Breakdown	26.9	49.6
HFSS	500 MHz	Coax (1.8/4.2mm)	1.2	30355	11.4	364.7271	34.0265	48.9	198.2
HFSS	750 MHz	Coax (1.8/4.2mm)	1.8	16181	16.9	236.7195	41.4293	110.1	445.8
Spark3D	250 MHz	Coax (8.5/21 mm)	3.125	1306	650	632.4216455	265.4588	115.4	1343.8
Spark3D	500 MHz	Coax (8.5/21 mm)	6.25	1306	1788	1048.899322	440.2752	198.9	5374.6
Spark3D	865 MHz	Coax (8.5/21 mm)	10.8	1306	6835	2050.781103	860.8148	379	6628.8
VSIM	865 MHz	Coax (8.5/21 mm)	10.8	-	-	3000 (Tool report)	-	379	6628.8

Research Presentation Conference 2020 Backup Slides

COMSOL Corona DC Breakdown :

Electron & Ion Density Number

r = 0.01 cm R = 10 cm Gap = 9.99 cm

Last Time Step (1 sec)