"'.' ™ ® 3 ' ’ o"_ . o e -
Q‘&ﬁ*'a%m y ‘ W D« _mvn e mnz‘ '

sl o o

Virtual Research Presentation Conference

GPU Computing for Fast, Massively Parallel Simulations of Manufacturing Processes

Principal Investigator: Richard Otis (357)
Co-Is: Hamsa Shwetha Venkataram (1740) LI
Program: Spontaneous Concept

RPC-127

10um=
: ’

Jet Propulsion Laboratory
California Institute of Technology

Research Presentation Conference 2020

Tutorial Introduction

Abstract

JPL is increasingly relying on manufacturing simulation software, including for additive manufacturing process design. As
our manufacturing simulation capability scales up to whole parts, the demand for parallel processing will increase faster
than what our present algorithms can support. The objective of this work was to explore moving certain types of
engineering computations to the GPU, for the purpose of performing billions of computations in parallel with the potential
upside being multiple orders-of-magnitude improvement in calculation times.

Empirical evidence was found during this study that the orders-of-magnitude (100x+) speedups enabled by GPUs,
reported in the literature, are possible to achieve on problems relevant to JPL and NASA. The speedups enabled by GPU-

aware simulation codes may constitute a game-changing technology opportunity for certain classes of physical simulation
problems.

Hesearch Presentation Gonference 2020 il

Problem Description =«

JPL is experiencing computational “growing pains” relating to
our increasing infusion of advanced manufacturing
technology, particularly 3D printing. Internal customers are
demanding results from more advanced manufacturing

processes with less iteration time. Dr. Cornelia Altenbuchner/JPL/CIF
SOA process modeling codes do not provide the just-in-time
accuracy needed to deliver quick-turn solutions, resulting in ¥ Each thread computes one element In the resuit matrix.
. . . . # The dot product is chunked Into dot products of TPB-long vectors.
time-consuming experimental trials. tmp = 0.
) for i in range(bpg):
GPU-based algorithms have been reported as an approach # Preload data into shared memory

sA[tx, ty]l = Alx, ty + i = TPB]

for achieving orders-of-magnitude speedups in performance sBltx, ty] = BItx + i * TPB, y]

for certain classes of problems. Within the last 12 months the
software tools for programming GPUs have matured :‘u*::l; ﬁ:ﬁii.&;;;“mmads skl el R
significantly in terms of accessibility to non-experts. =

Computes partial product on the shared memory

If the reported speedups can be replicated in modeling codes for j in range(TPB): |
used by NASA and JPL, this would mean running high-fidelity il e R RS
process models, which currently take weeks or months, in a # Wait until all threads finish computing

matter of hours. cuda.syncthreads()

Research Presentation Conference 2020

Methodology «

In [12]:

Several GPU-enabled array computing packages were ovttia):
considered during this study, including:

- Tensorflow: https://tensorflow.org/
- JAX: https://jax.readthedocs.io/en/latest/ [“
- Numba: http://numba.pydata.org/
- CuPy: https://cupy.dev/ o

- Scikit-cuda: https://scikit-cuda.readthedocs.io/en/latest/

- CUDA. jlI: https://juliagpu.org/ (1

JAX

npX = np.load("input_X.npy')
npGM = np.load(’input_GM.npy')
npchemical_potentials = np.array([-1008, -18ee, -10e0, -1880, -1080])

def driving_force_jax(inp_x, inp_gm, inp_mu):
return jnp.dot(inp_x, inp_mu).block_until_ready() - inp_gm

warm cache
driving_force_jax(npX, npGM, npchemical_potentials)

DeviceArray([[[[44967.168 , 34483.746 , 35703.016 , ...,

-3631.798 , -6328.6255, -24201.709]1]1]], dtype=float32)

npX_ = device_put(npX)

npeM_= device put(nnGM

In [2]: import tensorflow as tf
c inport numpy as np
W print{"Num GPUs Available: =, len(tf.config.experimental.list_physical_devices('GPU")))
D Num GPUs Available: 1

In [3]: with tf.device('/CPU:@'):
tf.constant(np.load(" input py'), dtypestf.float3z)
7 GM = tf.constant(np.load("in .npy'), dtypestf.float3z)
R chenical_potentials = tf.co ([-1000, 109, -1090, -1000, -1000], dtype-tf.float3z)
C
M @tf. function(experimental_compile-False)
o def driving_force_cpu(inp_x, inp_gm, inp_mu):

return tf.tensordot(inp_x, inp_mu, axes=(4,@)) - inp_gm
In [2]: [# Warm cache
driving_force_cpu(X, GM, chemical_potentials)

R

Qut[4]: <tf.Tensor: shape=(1, 1, 1, 26461866}, dtype=float32, numpy=
P array([[[[44967.168 , 34483.746 , 35703.816 , ..., -3631.798 ,
. 6328.6255, -24201.709]]]], dtype=float32)»
/ In [5]: %time driving_force_cpu(X, GM, chemical_potentials)

out[s]:

Array arithmetic (addition, multiplication) and linear
algebra capabilities such as matrix inversion were also
investigated for each of the packages.

In [6]:

In [7]:

out[7]:

In [8]:

CPU times: user 110 ms, sys: 7.82 ms, total: 117 ms

Wall time: 113 ms

<tf.Tensor: shapes(1, 1, 1, 26461866), dtypesfloat32, numpys

array([[[[44967.168 , 34483.746 , 35703.816 , ..., -3631.798 ,
-6328.6255, -24281.789]]]], dtype=Float32)>

with tf.device('/CPU:@"):
X = tf.constant(np.load(*inpu
GM = tf.constant(np.load(input,

), dtype=tf.float32)
py*), dtype=tf.float32)

chemical_potentials = tf.constant([-1060, -1808, -1000, -1008, -1000],

tf. function(experimental_compile=True)
def driving_force_cpu_xla(inp_x, inp_gm, inp_mu):
return tf.tensordot{inp_x, inp_mu, axes=(4,8)) - inp_gm

driving_force_cpu_xla(X, GM, chemical_potentials)

<tf.Tensor: shape=(1, 1, 1, 26461866), dtypes=float32, numpy=
array([[[[44967.168 , 34483.746 , 35703.016 , ..., -3631.798 ,
-6328.6255, -24201.709]]]], dtype=float32)>

%time driving_force_cpu_xla(X, GM, chemical potentials)

dtype=tf.floata2)

https://tensorflow.org/
https://jax.readthedocs.io/en/latest/
http://numba.pydata.org/
https://cupy.dev/
https://scikit-cuda.readthedocs.io/en/latest/
https://juliagpu.org/

Research Presentation Conference 2020

Results

Goals: Demonstrate 100x+ speedup from GPU on a JPL-
relevant simulation problem

Accomplishments
- Demonstrated 3-4x speedups from GPU at JPL

- Observed 500x speedup due to GPU by a NASA-
funded University team for a relevant simulation

Next Steps: Pursue the solution of a more focused
problem using the Numba toolkit to achieve the observed
speedups in a “real world” scenario.

The Julia programming language is also an interesting
option for new simulation software packages.

fun

ction hyperplane(compositions::MatrixType,

energies: :Floatvector, target_composition::Floatvector,
chemical_potentials::FloatVector, total_moles::FloatType,
fixed_chempot_indices: : Indexvector, fixed_comp_indices:: Indexvector,
result_fractions::FloatVector, result_simplex::Indexvector)
num_components = size(compositions)[2]

num_points = length(energies)

num_fixed_chempots = size(fixed_chempot_indices)[1]

simplex_size = num_components - num_fixed_chempots

index of -1 indicates total number of moles, i.e., N=1 conditior

included_composition_indices = fixed_comp_indices
best_guess_simplex = sort(setdiff!(collect(1:num_components), fixed_chempot_indices))
free_chempot_indices = best_guess_simplex[:]

candidate_simplex = best_guess_simplex[:]

trial_simplices = Array{In , 2}(undef, simplex_size, simplex_size)

fractions = Array{FloatTyp: (undef, simplex_size, simplex_size)

driving_forces = Array{FloatType, 1}(undef, num_points)
for i in 1:simplex_size

trial_simplices[i, :] = best_guess_simplex

trial_matrix = Array{FloatType, 3}(undef, simplex_size, simplex_size, simplex_size)
candidate_tieline = Array{FloatType, 2}(undef, simplex_size, simplex_size)

candidate_energies = Array{FloatType, 1}(undef, simplex_size)

candidate_potentials = Array{FloatType, 1}(undef, simplex_size)
smallest_fractions = Array{FloatType, 1}(undef, simplex_size)

saved_trial = @

max_iterations = 1000
in 1:max_iterations
for trial_idx in 1:simplex_size
comp_idx in 1:simplex_size
ici = included_composition_indices[comp_idx]

for simplex_idx in 1:simplex_size

if ici]
trial_matrix[comp_idx, simplex_idx, trial_idx] = compositions(trial_simplices(trial_idx, simplex_idx],

else
ici = -1, refer t N=1 nditi
trial_matrix[comp_idx, simplex_idx, trial_idx] = 1 # 1 mole-formula per formula unit of a phase

end # if

end # for
end # for

end # for

ici]

Research Presentarion Gonference 2020 A

Publications and References

https://rapids.ai/

https://cloud.google.com/tpu/docs/tpus

https://hackage.haskell.org/package/accelerate

http://numba.pydata.org/

https://scikit-cuda.readthedocs.io/en/latest/

https://qgithub.com/AdditiveModeling/pyphasefield/blob/a089672a9659h36a888f2be22¢913d2235bd3a30/pyphasefield/pyph
asefield/Engines/INCGPU.py

https://rapids.ai/
https://cloud.google.com/tpu/docs/tpus
https://hackage.haskell.org/package/accelerate
http://numba.pydata.org/
https://scikit-cuda.readthedocs.io/en/latest/
https://github.com/AdditiveModeling/pyphasefield/blob/a089672a9659b36a888f2be22c913d2235bd3a30/pyphasefield/pyphasefield/Engines/NCGPU.py

