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SMAP is the standard for global soil moisture estimation but has a revisit rate too slow for some hydrological/
meteorological studies. The high spatiotemporal resolution of CYGNSS GNSS reflection measurements (delay-Doppler
maps, DDMs) can address this issue and have been successfully calibrated with SMAP measurements. Unfortunately,
the standard approach, which uses only the peak value of the DDM, fails in regions where there is low variation in soll
moisture or complex surface conditions. We hypothesize that information from the entire 2D DDM could help in these
regions. The application of deep learning based techniques has the potential to extract additional information from the
full DDM, while simultaneously providing the option to incorporate additional contextual information from external
datasets. This work explored the data-driven approach of convolutional neural networks (CNNs) to determine complex
relationships between the reflection measurement and surface parameters, providing a mechanism to achieve
improved global soil moisture estimates. CYGNSS DDMs were trained on aligned SMAP soil moisture values, provided
with the context of ancillary datasets. Data was aggregated into training sets, and a CNN was developed to process
them. Results of this training were studied using an unbiased subset of samples, and compared to existing global soil
moisture products.
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Problem Description: Enhancing SM Resolution
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SMAP?! spatiotemporal resolution insufficient for some hydrological studies?3 (10 km, < 2 days)
CYGNSS* GNSS-R data can supplement SMAP, increasing resolution

This has been done by a group at UCAR®> using simple linear relation (SM = b*power + a)
Method fails in regions with stable SM, or where confounded by complex conditions
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Problem Description: Utilization of Complex Data

DDM Extract a single 1D profile Contributions from:
— * Surface topography/roughness

* Water/vegetation
* Spacecraft geometry/antenna

Extract key single-value metric

Time Delay

e Delay-Doppler maps downlinked from receiver
* 2D array contains analytically complex data

Doppler Shift
\ J * Traditional key metrics are extracted

I
* Majority of data is thrown out

Information rich, but complex, data * Discarded data gives information that could be
interpreted with sufficient contextual input
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Methodology: Overview

Convolutional Neural Network Dense Network
|

flattening

—_— Soil Moisture

e
pooling

Elevation | i- M;

a ——

f; NDVI S I SMAP DATA

5 E 18

= M ’

< Roughness | -

1. Dataset compilation and preprocessing e

‘ 2. Neural network architecture and implementation etcc. =+ === ----

3. Analysis of predictions



Research Presentation Conference 2020

Methodology: Datasets and Preprocessing

1. Compile relevant and useful datasets 3. Build training dataset with features for processing
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Soil Moisture

For full CYGNSS constellation, used ~10-20 million samples for 2018
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Methodology: Network Design

ddm_input: InputLayer

Isolated Land Type
Convolutional layer(s) - CNN

Learn DDM features

Inputs: DDMs
Outputs: Land Type
, — Soil Moisture
e | P o pomsrr— Concatenation layer CNN
Combines learned DDM features (flattened) and —
ancillary data combined Inputs: DDMs, Elevation, NDVI,

Roughness, etc.
Outputs: Soil Moisture

Dense layer(s)
Learns relationship between all data

Implemented with TensorFlow
and Keras libraries in Python
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Methodology: CNNs in Isolation

Independent study to determine best practices when using DDMs as inputs for CNN

Should CNNs even be used?

Artificial Neural Network

Input: Peak Power
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Are there issues with the DDMs?
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Methodology: CNNs in Isolation

Independent study to determine best practices when using DDMs as inputs for CNN

Can DDM inputs be modified to improve performance?

DDM augmentation at train time help with network generalization
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Can we improve the network architecture?
Borrowed elements from modern architectures.
Increased resolution of DDMs improved performance *  Complex mf)dels overf[t and more difficult to generalize.
* Opted for simpler architecture.
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Lessons learned transferred to improve CNN used in SM network
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Methodology: Complete Network

* Target SM as the output type
* Design for for flexibility in input options

Design for variety in nature of inputs (continuous, categorical, CNN output)

Specific Problem: Categorical Data

Inputs are all single valued (scalars)

Input is a 20 element vector

oo | | These inputs are “ordinal”
and i

This input has an arbitrary
ical value

e N |

\ “One-hot” Encoder
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Effectively acts as 20 inputs,
most of which are zeros
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Creates an array of length equal to all possible values for this input.
All values are zeros except one.
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Methodology: Analysis (Correlation)
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Methodology: Analysis (Error)
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Results: Systematically Low for High SM (Two Causes)

1) Differences can be correlated with SMAP flags Amazon filtered from training/test set!
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But are these predictions wrong, or are these erroneous SMAP values??
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Next Steps

These initial results are important in that:
* We’ve shown CNNs can be used to interpret DDMs directly
* Initial exploration shows strong correlation and opportunity for improvement
* Concept generalizable to other surface retrievals with DDMs

Immediate and advanced next steps would be:
* Explore influence of individual datasets extensively, refine input choices and filtering
* Study the spatial and temporal averaging to optimize performance
* Adding valuable, missing ancillary datasets (such as “distance-to-water”)
*  Fine tune network architecture and training parameters
*  “Ensemble” of networks for regional prediction
* Use vector inputs for ancillary data (input region of values, not average)
* Include in situ measurements in training as “high value” targets
* Applications to other targets, like “freeze/thaw”, flood/inundation, and water masks
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