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Abstract

SMAP is the standard for global soil moisture estimation but has a revisit rate too slow for some hydrological/ 
meteorological studies. The high spatiotemporal resolution of CYGNSS GNSS reflection measurements (delay-Doppler 
maps, DDMs) can address this issue and have been successfully calibrated with SMAP measurements. Unfortunately, 
the standard approach, which uses only the peak value of the DDM, fails in regions where there is low variation in soil 
moisture or complex surface conditions. We hypothesize that information from the entire 2D DDM could help in these 
regions. The application of deep learning based techniques has the potential to extract additional information from the 
full DDM, while simultaneously providing the option to incorporate additional contextual information from external 
datasets. This work explored the data-driven approach of convolutional neural networks (CNNs) to determine complex 
relationships between the reflection measurement and surface parameters, providing a mechanism to achieve 
improved global soil moisture estimates. CYGNSS DDMs were trained on aligned SMAP soil moisture values, provided 
with the context of ancillary datasets. Data was aggregated into training sets, and a CNN was developed to process 
them. Results of this training were studied using an unbiased subset of samples, and compared to existing global soil 
moisture products. 
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Problem Description: Enhancing SM Resolution

• SMAP1 spatiotemporal resolution insufficient for some hydrological studies2,3 (10 km, < 2 days)
• CYGNSS4 GNSS-R data can supplement SMAP, increasing resolution
• This has been done by a group at UCAR5 using simple linear relation (SM = b*power + a)
• Method fails in regions with stable SM, or where confounded by complex conditions

Single Day SMAP AM (repeat rate: 3 days) Single Day CYGNSS (repeat rate: 0.25 days)
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Problem Description: Utilization of Complex Data

Information rich, but complex, data

DDM Extract a single 1D profile

Extract key single-value metric

• Delay-Doppler maps downlinked from receiver
• 2D array contains analytically complex data
• Traditional key metrics are extracted
• Majority of data is thrown out
• Discarded data gives information that could be 

interpreted with sufficient contextual input

Contributions from:
• Surface topography/roughness
• Water/vegetation
• Spacecraft geometry/antenna
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Methodology: Overview

1. Dataset compilation and preprocessing
2. Neural network architecture and implementation
3. Analysis of predictions



Methodology: Datasets and Preprocessing
Data Rate Source Base Resolution Used Resolution

Primary Input: CYGNSS DDM Per DDM CYGNSS 0.5-7 km 0.5-7 km

Ancillary Inputs:

CYGNSS SC Info/PRN Number Per DDM CYGNSS DDM-scale DDM-scale

Angle/Range to Reflection Per DDM CYGNSS DDM-scale DDM-scale

Gains/EIRP Per DDM CYGNSS DDM-scale DDM-scale

Latitude/Longitude Per DDM CYGNSS DDM-scale DDM-scale

Surface Elevation/Slope Static SMAP L1-L3 Ancillary 1 km 3 km

NDVI Daily SMAP L1-L3 Ancillary 1 km 3 km

Stem Factor/VWC Static/Daily Calculated 1 km 3 km

Land Cover Static GlobCover/SMAP Ancillary 1 km 3 km

Surface Roughness Static SMAP L1-L3 Ancillary 1 km 3 km

Precipitation Daily SMAP L1-L3 Ancillary 36 km 36 km

Surface Water Static Pekel 30 m 3 km

Target: SMAP SM Value Daily SMAP 36 km 36 km

1. Compile relevant and useful datasets

2. Study datasets to gain intuition/find numerical issues

3. Build training dataset with features for processing

4. Filter, standardize, and balance data to optimize for training

For full CYGNSS constellation, used ~10-20 million samples for 2018



Methodology: Network Design

Dense layer(s)
Learns relationship between all data

Concatenation layer
Combines learned DDM features (flattened) and 

ancillary data combined

Convolutional layer(s)
Learn DDM features

Isolated Land Type 
CNN

Inputs: DDMs
Outputs: Land Type

Soil Moisture
CNN

Inputs: DDMs, Elevation, NDVI, 
Roughness, etc. 

Outputs: Soil Moisture

Implemented with TensorFlow 
and Keras libraries in Python



Methodology: CNNs in Isolation

Should CNNs even be used?

Are there issues with the DDMs?

RFI in DDMs

<<

Independent study to determine best practices when using DDMs as inputs for CNN



Methodology: CNNs in Isolation

Can DDM inputs be modified to improve performance?

Can we improve the network architecture?
• Borrowed elements from modern architectures. 
• Complex models overfit and more difficult to generalize.
• Opted for simpler architecture.

DDM augmentation at train time help with network generalization

Increased resolution of DDMs improved performance

Independent study to determine best practices when using DDMs as inputs for CNN

Lessons learned transferred to improve CNN used in SM network



Methodology: Complete Network
• Target SM as the output type
• Design for for flexibility in input options
• Design for variety in nature of inputs (continuous, categorical, CNN output)

Specific Problem: Categorical Data



Methodology: Analysis (Correlation)

Problematic?



Methodology: Analysis (Error)
Error/Percent Error with SM

Percent Error Geographically



Results: Global Trends Agree

• Similar global trends/features to SMAP4 and UCAR3

• Increased coverage from UCAR 

• Predictions differ in high SM areas (Amazon, Congo)



Results: Systematically Low for High SM (Two Causes)
1) Differences can be correlated with SMAP flags

Somewhat…

Amazon filtered from training/test set!

No representation in training!
2) Balancing in training puts emphasis on low SM values

But are these predictions wrong, or are these erroneous SMAP values??



Next Steps
These initial results are important in that: 

• We’ve shown CNNs can be used to interpret DDMs directly
• Initial exploration shows strong correlation and opportunity for improvement
• Concept generalizable to other surface retrievals with DDMs

Immediate and advanced next steps would be:
• Explore influence of individual datasets extensively, refine input choices and filtering
• Study the spatial and temporal averaging to optimize performance
• Adding valuable, missing ancillary datasets (such as “distance-to-water”)
• Fine tune network architecture and training parameters
• “Ensemble” of networks for regional prediction
• Use vector inputs for ancillary data (input region of values, not average)
• Include in situ measurements in training as “high value” targets
• Applications to other targets, like “freeze/thaw”, flood/inundation, and water masks
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